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fastmap Create a fastmap object

Description

A fastmap object provides a key-value store where the keys are strings and the values are any R
objects.

Usage

fastmap(missing_default = NULL)

Arguments

missing_default

The value to return when get() is called with a key that is not in the map. The
default is NULL, but in some cases it can be useful to return a sentinel value, such
as a key_missing object.

Details

In R, it is common to use environments as key-value stores, but they can leak memory: every time
a new key is used, R registers it in its global symbol table, which only grows and is never garbage
collected. If many different keys are used, this can cause a non-trivial amount of memory leakage.

Fastmap objects do not use the symbol table and do not leak memory.

Unlike with environments, the keys in a fastmap are always encoded as UTF-8, so if you call
$set() with two different strings that have the same Unicode values but have different encodings,
the second call will overwrite the first value. If you call $keys(), it will return UTF-8 encoded
strings, and similarly, $as_list() will return a list with names that have UTF-8 encoding.

Note that if you call $mset() with a named argument, where the name is non-ASCII, R will convert
the name to the native encoding before fastmap has the chance to convert them to UTF-8, and the
keys may get mangled in the process. However, if you use $mset(.list = x), then R will not
convert the keys to the native encoding, and the keys will be correctly converted to UTF-8. With
$mget(), the keys will be converted to UTF-8 before they are fetched.

fastmap objects have the following methods:

set(key, value) Set a key-value pair. key must be a string. Returns value.

mset(..., .list = NULL) Set multiple key-value pairs. The key-value pairs are named arguments,
and/or a list passed in as .list. Returns a named list where the names are the keys, and the
values are the values.

get(key, missing = missing_default) Get a value corresponding to key. If the key is not in the
map, return missing.

mget(keys, missing = missing_default) Get values corresponding to keys, which is a charac-
ter vector. The values will be returned in a named list where the names are the same as the
keys passed in, in the same order. For keys not in the map, they will have missing for their
value.
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has(keys) Given a vector of keys, returns a logical vector reporting whether each key is contained
in the map.

remove(keys) Given a vector of keys, remove the key-value pairs from the map. Returns a logical
vector reporting whether each item existed in (and was removed from) the map.

keys(sort = FALSE) Returns a character vector of all the keys. By default, the keys will be in
arbitrary order. Note that the order can vary across platforms and is not guaranteed to be
consistent. With sort=TRUE, the keys will be sorted according to their Unicode code point
values.

size() Returns the number of items in the map.

clone() Returns a copy of the fastmap object. This is a shallow clone; objects in the fastmap will
not be copied.

as_list(sort = FALSE) Return a named list where the names are the keys from the map, and the
values are the values. By default, the keys will be in arbitrary order. Note that the order can
vary across platforms and is not guaranteed to be consistent. With sort=TRUE, the keys will
be sorted according to their Unicode code point values.

reset() Reset the fastmap object, clearing all items.

Examples

# Create the fastmap object
m <- fastmap()

# Set some key-value pairs
m$set("x", 100)
m$set("letters", c("a", "b", "c"))
m$mset(numbers = c(10, 20, 30), nothing = NULL)

# Get values using keys
m$get("x")
m$get("numbers")
m$mget(c("letters", "numbers"))

# Missing keys return NULL by default, but this can be customized
m$get("xyz")

# Check for existence of keys
m$has("x")
m$has("nothing")
m$has("xyz")

# Remove one or more items
m$remove(c("letters", "x"))

# Return number of items
m$size()

# Get all keys
m$keys()

# Return named list that represents all key-value pairs
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str(m$as_list())

# Clear the map
m$reset()

# Specify missing value when get() is called
m <- fastmap()
m$get("x", missing = key_missing())
#> <Key Missing>

# Specify the default missing value
m <- fastmap(missing_default = key_missing())
m$get("x")
#> <Key Missing>

fastqueue Create a queue

Description

A fastqueue is backed by a list, which is used in a circular manner. The backing list will grow or
shrink as the queue changes in size.

Usage

fastqueue(init = 20, missing_default = NULL)

Arguments

init Initial size of the list that backs the queue. This is also used as the minimum
size of the list; it will not shrink any smaller.

missing_default

The value to return when remove() or peek() are called when the stack is
empty. Default is NULL.

Details

fastqueue objects have the following methods:

add(x) Add an object to the queue.

madd(..., .list = NULL) Add objects to the queue. .list can be a list of objects to add.

remove(missing = missing_default) Remove and return the next object in the queue, but do not
remove it from the queue. If the queue is empty, this will return missing, which defaults to
the value of missing_default that queue() was created with (typically, NULL).



faststack 5

mremove(n, missing = missing_default) Remove and return the next n objects on the queue,
in a list. The first element of the list is the oldest object in the queue (in other words, the
next item that would be returned by remove()). If n is greater than the number of objects
in the queue, any requested items beyond those in the queue will be replaced with missing
(typically, NULL).

peek(missing = missing_default) Return the next object in the queue but do not remove it from
the queue. If the queue is empty, this will return missing.

reset() Reset the queue, clearing all items.

size() Returns the number of items in the queue.

as_list() Return a list containing the objects in the queue, where the first element in the list
is oldest object in the queue (in other words, it is the next item that would be returned by
remove()), and the last element in the list is the most recently added object.

faststack Create a stack

Description

A faststack is backed by a list. The backing list will grow or shrink as the stack changes in size.

Usage

faststack(init = 20, missing_default = NULL)

Arguments

init Initial size of the list that backs the stack. This is also used as the minimum size
of the list; it will not shrink any smaller.

missing_default

The value to return when pop() or peek() are called when the stack is empty.
Default is NULL.

Details

faststack objects have the following methods:

push(x) Push an object onto the stack.

mpush(..., .list = NULL) Push objects onto the stack. .list can be a list of objects to add.

pop(missing = missing_default) Remove and return the top object on the stack. If the stack is
empty, it will return missing, which defaults to the value of missing_default that stack()
was created with (typically, NULL).

mpop(n, missing = missing_default) Remove and return the top n objects on the stack, in a
list. The first element of the list is the top object in the stack. If n is greater than the number
of objects in the stack, any requested items beyond those in the stack will be replaced with
missing (typically, NULL).
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peek(missing = missing_default) Return the top object on the stack, but do not remove it from
the stack. If the stack is empty, this will return missing.

reset() Reset the stack, clearing all items.

size() Returns the number of items in the stack.

as_list() Return a list containing the objects in the stack, where the first element in the list is the
object at the bottom of the stack, and the last element in the list is the object at the top of the
stack.

key_missing A missing key object

Description

A key_missing object represents a missing key.

Usage

key_missing()

is.key_missing(x)

Arguments

x An object to test.
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