
Package: shiny (via r-universe)
September 25, 2024

Type Package

Title Web Application Framework for R

Version 1.9.1.9000

Description Makes it incredibly easy to build interactive web
applications with R. Automatic ``reactive'' binding between
inputs and outputs and extensive prebuilt widgets make it
possible to build beautiful, responsive, and powerful
applications with minimal effort.

License GPL-3 | file LICENSE

Depends R (>= 3.0.2), methods

Imports utils, grDevices, httpuv (>= 1.5.2), mime (>= 0.3), jsonlite
(>= 0.9.16), xtable, fontawesome (>= 0.4.0), htmltools (>=
0.5.4), R6 (>= 2.0), sourcetools, later (>= 1.0.0), promises
(>= 1.1.0), tools, crayon, rlang (>= 0.4.10), fastmap (>=
1.1.1), withr, commonmark (>= 1.7), glue (>= 1.3.2), bslib (>=
0.6.0), cachem (>= 1.1.0), lifecycle (>= 0.2.0)

Suggests datasets, DT, Cairo (>= 1.5-5), testthat (>= 3.0.0), knitr
(>= 1.6), markdown, rmarkdown, ggplot2, reactlog (>= 1.0.0),
magrittr, yaml, future, dygraphs, ragg, showtext, sass

URL https://shiny.posit.co/, https://github.com/rstudio/shiny

BugReports https://github.com/rstudio/shiny/issues

Collate 'globals.R' 'app-state.R' 'app_template.R' 'bind-cache.R'
'bind-event.R' 'bookmark-state-local.R' 'bookmark-state.R'
'bootstrap-deprecated.R' 'bootstrap-layout.R' 'conditions.R'
'map.R' 'utils.R' 'bootstrap.R' 'busy-indicators-spinners.R'
'busy-indicators.R' 'cache-utils.R' 'deprecated.R' 'devmode.R'
'diagnose.R' 'extended-task.R' 'fileupload.R' 'graph.R'
'reactives.R' 'reactive-domains.R' 'history.R' 'hooks.R'
'html-deps.R' 'image-interact-opts.R' 'image-interact.R'
'imageutils.R' 'input-action.R' 'input-checkbox.R'
'input-checkboxgroup.R' 'input-date.R' 'input-daterange.R'
'input-file.R' 'input-numeric.R' 'input-password.R'

1

https://shiny.posit.co/
https://github.com/rstudio/shiny
https://github.com/rstudio/shiny/issues

2 Contents

'input-radiobuttons.R' 'input-select.R' 'input-slider.R'
'input-submit.R' 'input-text.R' 'input-textarea.R'
'input-utils.R' 'insert-tab.R' 'insert-ui.R' 'jqueryui.R'
'knitr.R' 'middleware-shiny.R' 'middleware.R' 'timer.R'
'shiny.R' 'mock-session.R' 'modal.R' 'modules.R'
'notifications.R' 'priorityqueue.R' 'progress.R' 'react.R'
'reexports.R' 'render-cached-plot.R' 'render-plot.R'
'render-table.R' 'run-url.R' 'runapp.R' 'serializers.R'
'server-input-handlers.R' 'server-resource-paths.R' 'server.R'
'shiny-options.R' 'shiny-package.R' 'shinyapp.R' 'shinyui.R'
'shinywrappers.R' 'showcase.R' 'snapshot.R' 'staticimports.R'
'tar.R' 'test-export.R' 'test-server.R' 'test.R'
'update-input.R' 'utils-lang.R' 'version_bs_date_picker.R'
'version_ion_range_slider.R' 'version_jquery.R'
'version_jqueryui.R' 'version_selectize.R' 'version_strftime.R'
'viewer.R'

RoxygenNote 7.3.2

Encoding UTF-8

Roxygen list(markdown = TRUE)

RdMacros lifecycle

Config/testthat/edition 3

Config/Needs/check shinytest2

Repository https://posit-dev-shinycoreci.r-universe.dev

RemoteUrl https://github.com/rstudio/shiny

RemoteRef HEAD

RemoteSha 34f9e4484d88c7f8547053a2da9ab312cec50bc8

Contents
shiny-package . 5
absolutePanel . 7
actionButton . 9
addResourcePath . 10
bindCache . 11
bindEvent . 19
bookmarkButton . 22
bootstrapLib . 23
bootstrapPage . 24
brushedPoints . 25
brushOpts . 27
busyIndicatorOptions . 28
callModule . 30
checkboxGroupInput . 31
checkboxInput . 33
clickOpts . 34

Contents 3

column . 35
conditionalPanel . 36
createRenderFunction . 38
createWebDependency . 41
dateInput . 42
dateRangeInput . 45
debounce . 47
devmode . 49
domains . 54
downloadButton . 55
downloadHandler . 56
enableBookmarking . 57
exportTestValues . 61
ExtendedTask . 63
fileInput . 65
fillPage . 67
fillRow . 69
fixedPage . 70
flowLayout . 72
fluidPage . 73
freezeReactiveVal . 75
getCurrentOutputInfo . 76
getQueryString . 78
getShinyOption . 79
helpText . 82
htmlOutput . 83
icon . 84
inputPanel . 85
insertTab . 85
insertUI . 88
invalidateLater . 91
is.reactivevalues . 92
isolate . 92
isRunning . 94
isTruthy . 94
loadSupport . 95
markdown . 96
markRenderFunction . 97
maskReactiveContext . 98
MockShinySession . 99
modalDialog . 106
moduleServer . 108
navbarPage . 111
navlistPanel . 113
NS . 114
numericInput . 115
observe . 116
observeEvent . 118

4 Contents

onBookmark . 123
onFlush . 127
onStop . 129
outputOptions . 131
parseQueryString . 132
passwordInput . 133
plotOutput . 134
plotPNG . 139
Progress . 140
radioButtons . 143
reactive . 145
reactiveFileReader . 147
reactivePoll . 148
reactiveTimer . 150
reactiveVal . 151
reactiveValues . 153
reactiveValuesToList . 154
reactlog . 155
registerInputHandler . 156
removeInputHandler . 157
renderCachedPlot . 158
renderImage . 162
renderPlot . 165
renderPrint . 166
renderUI . 169
repeatable . 170
req . 171
restoreInput . 173
runApp . 173
runExample . 175
runGadget . 176
runTests . 177
runUrl . 178
safeError . 180
selectInput . 181
serverInfo . 184
session . 185
setBookmarkExclude . 188
setSerializer . 188
shinyApp . 189
shinyAppTemplate . 191
showBookmarkUrlModal . 192
showModal . 193
showNotification . 193
showTab . 195
sidebarLayout . 196
sizeGrowthRatio . 198
sliderInput . 199

shiny-package 5

snapshotExclude . 201
snapshotPreprocessInput . 202
snapshotPreprocessOutput . 202
splitLayout . 203
stopApp . 204
submitButton . 204
tableOutput . 206
tabPanel . 208
tabsetPanel . 209
testServer . 210
textAreaInput . 212
textInput . 213
textOutput . 214
titlePanel . 215
updateActionButton . 216
updateCheckboxGroupInput . 218
updateCheckboxInput . 220
updateDateInput . 221
updateDateRangeInput . 223
updateNumericInput . 224
updateQueryString . 226
updateRadioButtons . 228
updateSelectInput . 230
updateSliderInput . 232
updateTabsetPanel . 234
updateTextAreaInput . 235
updateTextInput . 237
urlModal . 238
useBusyIndicators . 239
validate . 240
varSelectInput . 242
verticalLayout . 244
viewer . 245
wellPanel . 246
withMathJax . 246
withProgress . 247

Index 250

shiny-package Web Application Framework for R

Description

Shiny makes it incredibly easy to build interactive web applications with R. Automatic "reactive"
binding between inputs and outputs and extensive prebuilt widgets make it possible to build beauti-
ful, responsive, and powerful applications with minimal effort.

6 shiny-package

Details

The Shiny tutorial at https://shiny.rstudio.com/tutorial/ explains the framework in depth,
walks you through building a simple application, and includes extensive annotated examples.

Author(s)

Maintainer: Winston Chang <winston@posit.co> (ORCID)

Authors:

• Joe Cheng <joe@posit.co>

• JJ Allaire <jj@posit.co>

• Carson Sievert <carson@posit.co> (ORCID)

• Barret Schloerke <barret@posit.co> (ORCID)

• Yihui Xie <yihui@posit.co>

• Jeff Allen

• Jonathan McPherson <jonathan@posit.co>

• Alan Dipert

• Barbara Borges

Other contributors:

• Posit Software, PBC [copyright holder, funder]

• jQuery Foundation (jQuery library and jQuery UI library) [copyright holder]

• jQuery contributors (jQuery library; authors listed in inst/www/shared/jquery-AUTHORS.txt)
[contributor, copyright holder]

• jQuery UI contributors (jQuery UI library; authors listed in inst/www/shared/jqueryui/AUTHORS.txt)
[contributor, copyright holder]

• Mark Otto (Bootstrap library) [contributor]

• Jacob Thornton (Bootstrap library) [contributor]

• Bootstrap contributors (Bootstrap library) [contributor]

• Twitter, Inc (Bootstrap library) [copyright holder]

• Prem Nawaz Khan (Bootstrap accessibility plugin) [contributor]

• Victor Tsaran (Bootstrap accessibility plugin) [contributor]

• Dennis Lembree (Bootstrap accessibility plugin) [contributor]

• Srinivasu Chakravarthula (Bootstrap accessibility plugin) [contributor]

• Cathy O’Connor (Bootstrap accessibility plugin) [contributor]

• PayPal, Inc (Bootstrap accessibility plugin) [copyright holder]

• Stefan Petre (Bootstrap-datepicker library) [contributor, copyright holder]

• Andrew Rowls (Bootstrap-datepicker library) [contributor, copyright holder]

• Brian Reavis (selectize.js library) [contributor, copyright holder]

• Salmen Bejaoui (selectize-plugin-a11y library) [contributor, copyright holder]

https://shiny.rstudio.com/tutorial/
https://orcid.org/0000-0002-1576-2126
https://orcid.org/0000-0002-4958-2844
https://orcid.org/0000-0001-9986-114X

absolutePanel 7

• Denis Ineshin (ion.rangeSlider library) [contributor, copyright holder]

• Sami Samhuri (Javascript strftime library) [contributor, copyright holder]

• SpryMedia Limited (DataTables library) [contributor, copyright holder]

• John Fraser (showdown.js library) [contributor, copyright holder]

• John Gruber (showdown.js library) [contributor, copyright holder]

• Ivan Sagalaev (highlight.js library) [contributor, copyright holder]

• R Core Team (tar implementation from R) [contributor, copyright holder]

See Also

shiny-options for documentation about global options.

absolutePanel Panel with absolute positioning

Description

Creates a panel whose contents are absolutely positioned.

Usage

absolutePanel(
...,
top = NULL,
left = NULL,
right = NULL,
bottom = NULL,
width = NULL,
height = NULL,
draggable = FALSE,
fixed = FALSE,
cursor = c("auto", "move", "default", "inherit")

)

fixedPanel(
...,
top = NULL,
left = NULL,
right = NULL,
bottom = NULL,
width = NULL,
height = NULL,
draggable = FALSE,
cursor = c("auto", "move", "default", "inherit")

)

8 absolutePanel

Arguments

... Attributes (named arguments) or children (unnamed arguments) that should be
included in the panel.

top Distance between the top of the panel, and the top of the page or parent con-
tainer.

left Distance between the left side of the panel, and the left of the page or parent
container.

right Distance between the right side of the panel, and the right of the page or parent
container.

bottom Distance between the bottom of the panel, and the bottom of the page or parent
container.

width Width of the panel.

height Height of the panel.

draggable If TRUE, allows the user to move the panel by clicking and dragging.

fixed Positions the panel relative to the browser window and prevents it from being
scrolled with the rest of the page.

cursor The type of cursor that should appear when the user mouses over the panel. Use
"move" for a north-east-south-west icon, "default" for the usual cursor arrow,
or "inherit" for the usual cursor behavior (including changing to an I-beam
when the cursor is over text). The default is "auto", which is equivalent to
ifelse(draggable, "move", "inherit").

Details

The absolutePanel function creates a <div> tag whose CSS position is set to absolute (or fixed
if fixed = TRUE). The way absolute positioning works in HTML is that absolute coordinates are
specified relative to its nearest parent element whose position is not set to static (which is the
default), and if no such parent is found, then relative to the page borders. If you’re not sure what
that means, just keep in mind that you may get strange results if you use absolutePanel from
inside of certain types of panels.

The fixedPanel function is the same as absolutePanel with fixed = TRUE.

The position (top, left, right, bottom) and size (width, height) parameters are all optional, but
you should specify exactly two of top, bottom, and height and exactly two of left, right, and
width for predictable results.

Like most other distance parameters in Shiny, the position and size parameters take a number (in-
terpreted as pixels) or a valid CSS size string, such as "100px" (100 pixels) or "25%".

For arcane HTML reasons, to have the panel fill the page or parent you should specify 0 for top,
left, right, and bottom rather than the more obvious width = "100%" and height = "100%".

Value

An HTML element or list of elements.

actionButton 9

actionButton Action button/link

Description

Creates an action button or link whose value is initially zero, and increments by one each time it is
pressed.

Usage

actionButton(inputId, label, icon = NULL, width = NULL, disabled = FALSE, ...)

actionLink(inputId, label, icon = NULL, ...)

Arguments

inputId The input slot that will be used to access the value.

label The contents of the button or link–usually a text label, but you could also use
any other HTML, like an image.

icon An optional icon() to appear on the button.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

disabled If TRUE, the button will not be clickable. Use updateActionButton() to dy-
namically enable/disable the button.

... Named attributes to be applied to the button or link.

Server value

An integer of class "shinyActionButtonValue". This class differs from ordinary integers in that
a value of 0 is considered "falsy". This implies two things:

• Event handlers (e.g., observeEvent(), eventReactive()) won’t execute on initial load.

• Input validation (e.g., req(), need()) will fail on initial load.

See Also

observeEvent() and eventReactive()

Other input elements: checkboxGroupInput(), checkboxInput(), dateInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

10 addResourcePath

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("obs", "Number of observations", 0, 1000, 500),
actionButton("goButton", "Go!", class = "btn-success"),
plotOutput("distPlot")

)

server <- function(input, output) {
output$distPlot <- renderPlot({
Take a dependency on input$goButton. This will run once initially,
because the value changes from NULL to 0.
input$goButton

Use isolate() to avoid dependency on input$obs
dist <- isolate(rnorm(input$obs))
hist(dist)

})
}

shinyApp(ui, server)

}

Example of adding extra class values
actionButton("largeButton", "Large Primary Button", class = "btn-primary btn-lg")
actionLink("infoLink", "Information Link", class = "btn-info")

addResourcePath Resource Publishing

Description

Add, remove, or list directory of static resources to Shiny’s web server, with the given path prefix.
Primarily intended for package authors to make supporting JavaScript/CSS files available to their
components.

Usage

addResourcePath(prefix, directoryPath)

resourcePaths()

removeResourcePath(prefix)

bindCache 11

Arguments

prefix The URL prefix (without slashes). Valid characters are a-z, A-Z, 0-9, hyphen,
period, and underscore. For example, a value of ’foo’ means that any request
paths that begin with ’/foo’ will be mapped to the given directory.

directoryPath The directory that contains the static resources to be served.

Details

Shiny provides two ways of serving static files (i.e., resources):

1. Static files under the www/ directory are automatically made available under a request path that
begins with /.

2. addResourcePath() makes static files in a directoryPath available under a request path
that begins with prefix.

The second approach is primarily intended for package authors to make supporting JavaScript/CSS
files available to their components.

Tools for managing static resources published by Shiny’s web server:

• addResourcePath() adds a directory of static resources.
• resourcePaths() lists the currently active resource mappings.
• removeResourcePath() removes a directory of static resources.

See Also

singleton()

Examples

addResourcePath('datasets', system.file('data', package='datasets'))
resourcePaths()
removeResourcePath('datasets')
resourcePaths()

make sure all resources are removed
lapply(names(resourcePaths()), removeResourcePath)

bindCache Add caching with reactivity to an object

Description

bindCache() adds caching reactive() expressions and render* functions (like renderText(),
renderTable(), ...).

Ordinary reactive() expressions automatically cache their most recent value, which helps to avoid
redundant computation in downstream reactives. bindCache() will cache all previous values (as
long as they fit in the cache) and they can be shared across user sessions. This allows bindCache()
to dramatically improve performance when used correctly.

12 bindCache

Usage

bindCache(x, ..., cache = "app")

Arguments

x The object to add caching to.
... One or more expressions to use in the caching key.
cache The scope of the cache, or a cache object. This can be "app" (the default),

"session", or a cache object like a cachem::cache_disk(). See the Cache
Scoping section for more information.

Details

bindCache() requires one or more expressions that are used to generate a cache key, which is used
to determine if a computation has occurred before and hence can be retrieved from the cache. If
you’re familiar with the concept of memoizing pure functions (e.g., the memoise package), you can
think of the cache key as the input(s) to a pure function. As such, one should take care to make sure
the use of bindCache() is pure in the same sense, namely:

1. For a given key, the return value is always the same.
2. Evaluation has no side-effects.

In the example here, the bindCache() key consists of input$x and input$y combined, and the
value is input$x * input$y. In this simple example, for any given key, there is only one possible
returned value.

r <- reactive({ input$x * input$y }) %>%
bindCache(input$x, input$y)

The largest performance improvements occur when the cache key is fast to compute and the reactive
expression is slow to compute. To see if the value should be computed, a cached reactive evaluates
the key, and then serializes and hashes the result. If the resulting hashed key is in the cache, then
the cached reactive simply retrieves the previously calculated value and returns it; if not, then the
value is computed and the result is stored in the cache before being returned.

To compute the cache key, bindCache() hashes the contents of ..., so it’s best to avoid including
large objects in a cache key since that can result in slow hashing. It’s also best to avoid reference
objects like environments and R6 objects, since the serialization of these objects may not capture
relevant changes.

If you want to use a large object as part of a cache key, it may make sense to do some sort of
reduction on the data that still captures information about whether a value can be retrieved from the
cache. For example, if you have a large data set with timestamps, it might make sense to extract the
most recent timestamp and return that. Then, instead of hashing the entire data object, the cached
reactive only needs to hash the timestamp.

r <- reactive({ compute(bigdata()) } %>%
bindCache({ extract_most_recent_time(bigdata()) })

For computations that are very slow, it often makes sense to pair bindCache() with bindEvent()
so that no computation is performed until the user explicitly requests it (for more, see the Details
section of bindEvent()).

bindCache 13

Cache keys and reactivity

Because the value expression (from the original reactive()) is cached, it is not necessarily re-
executed when someone retrieves a value, and therefore it can’t be used to decide what objects to
take reactive dependencies on. Instead, the key is used to figure out which objects to take reactive
dependencies on. In short, the key expression is reactive, and value expression is no longer reactive.

Here’s an example of what not to do: if the key is input$x and the value expression is from
reactive({input$x + input$y}), then the resulting cached reactive will only take a reactive de-
pendency on input$x – it won’t recompute {input$x + input$y} when just input$y changes.
Moreover, the cache won’t use input$y as part of the key, and so it could return incorrect values in
the future when it retrieves values from the cache. (See the examples below for an example of this.)

A better cache key would be something like input$x, input$y. This does two things: it ensures
that a reactive dependency is taken on both input$x and input$y, and it also makes sure that both
values are represented in the cache key.

In general, key should use the same reactive inputs as value, but the computation should be simpler.
If there are other (non-reactive) values that are consumed, such as external data sources, they should
be used in the key as well. Note that if the key is large, it can make sense to do some sort of reduction
on it so that the serialization and hashing of the cache key is not too expensive.

Remember that the key is reactive, so it is not re-executed every single time that someone accesses
the cached reactive. It is only re-executed if it has been invalidated by one of the reactives it depends
on. For example, suppose we have this cached reactive:

r <- reactive({ input$x * input$y }) %>%
bindCache(input$x, input$y)

In this case, the key expression is essentially reactive(list(input$x, input$y)) (there’s a bit
more to it, but that’s a good enough approximation). The first time r() is called, it executes the
key, then fails to find it in the cache, so it executes the value expression, { input$x + input$y }. If
r() is called again, then it does not need to re-execute the key expression, because it has not been
invalidated via a change to input$x or input$y; it simply returns the previous value. However, if
input$x or input$y changes, then the reactive expression will be invalidated, and the next time
that someone calls r(), the key expression will need to be re-executed.

Note that if the cached reactive is passed to bindEvent(), then the key expression will no longer
be reactive; instead, the event expression will be reactive.

Cache scope

By default, when bindCache() is used, it is scoped to the running application. That means that it
shares a cache with all user sessions connected to the application (within the R process). This is
done with the cache parameter’s default value, "app".

With an app-level cache scope, one user can benefit from the work done for another user’s session.
In most cases, this is the best way to get performance improvements from caching. However, in
some cases, this could leak information between sessions. For example, if the cache key does not
fully encompass the inputs used by the value, then data could leak between the sessions. Or if a user
sees that a cached reactive returns its value very quickly, they may be able to infer that someone
else has already used it with the same values.

14 bindCache

It is also possible to scope the cache to the session, with cache="session". This removes the risk
of information leaking between sessions, but then one session cannot benefit from computations
performed in another session.

It is possible to pass in caching objects directly to bindCache(). This can be useful if, for example,
you want to use a particular type of cache with specific cached reactives, or if you want to use a
cachem::cache_disk() that is shared across multiple processes and persists beyond the current R
session.

To use different settings for an application-scoped cache, you can call shinyOptions() at the top
of your app.R, server.R, or global.R. For example, this will create a cache with 500 MB of space
instead of the default 200 MB:

shinyOptions(cache = cachem::cache_mem(max_size = 500e6))

To use different settings for a session-scoped cache, you can set session$cache at the top of
your server function. By default, it will create a 200 MB memory cache for each session, but
you can replace it with something different. To use the session-scoped cache, you must also call
bindCache() with cache="session". This will create a 100 MB cache for the session:

function(input, output, session) {
session$cache <- cachem::cache_mem(max_size = 100e6)
...

}

If you want to use a cache that is shared across multiple R processes, you can use a cachem::cache_disk().
You can create a application-level shared cache by putting this at the top of your app.R, server.R, or
global.R:

shinyOptions(cache = cachem::cache_disk(file.path(dirname(tempdir()), "myapp-cache"))

This will create a subdirectory in your system temp directory named myapp-cache (replace myapp-cache
with a unique name of your choosing). On most platforms, this directory will be removed when your
system reboots. This cache will persist across multiple starts and stops of the R process, as long as
you do not reboot.

To have the cache persist even across multiple reboots, you can create the cache in a location outside
of the temp directory. For example, it could be a subdirectory of the application:

shinyOptions(cache = cachem::cache_disk("./myapp-cache"))

In this case, resetting the cache will have to be done manually, by deleting the directory.

You can also scope a cache to just one item, or selected items. To do that, create a cachem::cache_mem()
or cachem::cache_disk(), and pass it as the cache argument of bindCache().

bindCache 15

Computing cache keys

The actual cache key that is used internally takes value from evaluating the key expression(s) (from
the ... arguments) and combines it with the (unevaluated) value expression.

This means that if there are two cached reactives which have the same result from evaluating the
key, but different value expressions, then they will not need to worry about collisions.

However, if two cached reactives have identical key and value expressions expressions, they will
share the cached values. This is useful when using cache="app": there may be multiple user
sessions which create separate cached reactive objects (because they are created from the same
code in the server function, but the server function is executed once for each user session), and
those cached reactive objects across sessions can share values in the cache.

Async with cached reactives

With a cached reactive expression, the key and/or value expression can be asynchronous. In other
words, they can be promises — not regular R promises, but rather objects provided by the promises
package, which are similar to promises in JavaScript. (See promises::promise() for more infor-
mation.) You can also use future::future() objects to run code in a separate process or even on
a remote machine.

If the value returns a promise, then anything that consumes the cached reactive must expect it to
return a promise.

Similarly, if the key is a promise (in other words, if it is asynchronous), then the entire cached
reactive must be asynchronous, since the key must be computed asynchronously before it knows
whether to compute the value or the value is retrieved from the cache. Anything that consumes the
cached reactive must therefore expect it to return a promise.

Developing render functions for caching

If you’ve implemented your own render*() function, it may just work with bindCache(), but it
is possible that you will need to make some modifications. These modifications involve helping
bindCache() avoid cache collisions, dealing with internal state that may be set by the, render
function, and modifying the data as it goes in and comes out of the cache.

You may need to provide a cacheHint to createRenderFunction() (or htmlwidgets::shinyRenderWidget(),
if you’ve authored an htmlwidget) in order for bindCache() to correctly compute a cache key.

The potential problem is a cache collision. Consider the following:

output$x1 <- renderText({ input$x }) %>% bindCache(input$x)
output$x2 <- renderText({ input$x * 2 }) %>% bindCache(input$x)

Both output$x1 and output$x2 use input$x as part of their cache key, but if it were the only
thing used in the cache key, then the two outputs would have a cache collision, and they would
have the same output. To avoid this, a cache hint is automatically added when renderText() calls
createRenderFunction(). The cache hint is used as part of the actual cache key, in addition to
the one passed to bindCache() by the user. The cache hint can be viewed by calling the internal
Shiny function extractCacheHint():

r <- renderText({ input$x })
shiny:::extractCacheHint(r)

https://rstudio.github.io/promises/

16 bindCache

This returns a nested list containing an item, $origUserFunc$body, which in this case is the ex-
pression which was passed to renderText(): { input$x }. This (quoted) expression is mixed into
the actual cache key, and it is how output$x1 does not have collisions with output$x2.

For most developers of render functions, nothing extra needs to be done; the automatic inference
of the cache hint is sufficient. Again, you can check it by calling shiny:::extractCacheHint(),
and by testing the render function for cache collisions in a real application.

In some cases, however, the automatic cache hint inference is not sufficient, and it is necessary to
provide a cache hint. This is true for renderPrint(). Unlike renderText(), it wraps the user-
provided expression in another function, before passing it to createRenderFunction() (instead of
createRenderFunction()). Because the user code is wrapped in another function, createRenderFunction()
is not able to automatically extract the user-provided code and use it in the cache key. Instead,
renderPrint calls createRenderFunction(), it explicitly passes along a cacheHint, which in-
cludes a label and the original user expression.

In general, if you need to provide a cacheHint, it is best practice to provide a label id, the user’s
expr, as well as any other arguments that may influence the final value.

For htmlwidgets, it will try to automatically infer a cache hint; again, you can inspect the cache hint
with shiny:::extractCacheHint() and also test it in an application. If you do need to explicitly
provide a cache hint, pass it to shinyRenderWidget. For example:

renderMyWidget <- function(expr) {
q <- rlang::enquo0(expr)

htmlwidgets::shinyRenderWidget(
q,
myWidgetOutput,
quoted = TRUE,
cacheHint = list(label = "myWidget", userQuo = q)

)
}

If your render function sets any internal state, you may find it useful in your call to createRenderFunction()
to use the cacheWriteHook and/or cacheReadHook parameters. These hooks are functions that run
just before the object is stored in the cache, and just after the object is retrieved from the cache.
They can modify the data that is stored and retrieved; this can be useful if extra information needs
to be stored in the cache. They can also be used to modify the state of the application; for exam-
ple, it can call createWebDependency() to make JS/CSS resources available if the cached object
is loaded in a different R process. (See the source of htmlwidgets::shinyRenderWidget for an
example of this.)

Uncacheable objects

Some render functions cannot be cached, typically because they have side effects or modify some
external state, and they must re-execute each time in order to work properly.

For developers of such code, they should call createRenderFunction() (or markRenderFunction())
with cacheHint = FALSE.

bindCache 17

Caching with renderPlot()

When bindCache() is used with renderPlot(), the height and width passed to the original
renderPlot() are ignored. They are superseded by sizePolicy argument passed to ‘bindCache.
The default is:

sizePolicy = sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2)

sizePolicy must be a function that takes a two-element numeric vector as input, representing the
width and height of the element in the browser window, and it must return a two-element
numeric vector, representing the pixel dimensions of the plot to generate. The purpose is to round
the actual pixel dimensions from the browser to some other dimensions, so that this will not generate
and cache images of every possible pixel dimension. See sizeGrowthRatio() for more information
on the default sizing policy.

See Also

bindEvent(), renderCachedPlot() for caching plots.

Examples

Not run:
rc <- bindCache(

x = reactive({
Sys.sleep(2) # Pretend this is expensive
input$x * 100

}),
input$x

)

Can make it prettier with the %>% operator
library(magrittr)

rc <- reactive({
Sys.sleep(2)
input$x * 100

}) %>%
bindCache(input$x)

End(Not run)

Only run app examples in interactive R sessions
if (interactive()) {

Basic example
shinyApp(

ui = fluidPage(
sliderInput("x", "x", 1, 10, 5),
sliderInput("y", "y", 1, 10, 5),
div("x * y: "),
verbatimTextOutput("txt")

18 bindCache

),
server = function(input, output) {

r <- reactive({
The value expression is an _expensive_ computation
message("Doing expensive computation...")
Sys.sleep(2)
input$x * input$y

}) %>%
bindCache(input$x, input$y)

output$txt <- renderText(r())
}

)

Caching renderText
shinyApp(

ui = fluidPage(
sliderInput("x", "x", 1, 10, 5),
sliderInput("y", "y", 1, 10, 5),
div("x * y: "),
verbatimTextOutput("txt")

),
server = function(input, output) {

output$txt <- renderText({
message("Doing expensive computation...")
Sys.sleep(2)
input$x * input$y

}) %>%
bindCache(input$x, input$y)

}
)

Demo of using events and caching with an actionButton
shinyApp(

ui = fluidPage(
sliderInput("x", "x", 1, 10, 5),
sliderInput("y", "y", 1, 10, 5),
actionButton("go", "Go"),
div("x * y: "),
verbatimTextOutput("txt")

),
server = function(input, output) {

r <- reactive({
message("Doing expensive computation...")
Sys.sleep(2)
input$x * input$y

}) %>%
bindCache(input$x, input$y) %>%
bindEvent(input$go)
The cached, eventified reactive takes a reactive dependency on
input$go, but doesn't use it for the cache key. It uses input$x and

bindEvent 19

input$y for the cache key, but doesn't take a reactive dependency on
them, because the reactive dependency is superseded by addEvent().

output$txt <- renderText(r())
}

)

}

bindEvent Make an object respond only to specified reactive events

Description

Modify an object to respond to "event-like" reactive inputs, values, and expressions. bindEvent()
can be used with reactive expressions, render functions, and observers. The resulting object takes
a reactive dependency on the ... arguments, and not on the original object’s code. This can, for
example, be used to make an observer execute only when a button is pressed.

bindEvent() was added in Shiny 1.6.0. When it is used with reactive() and observe(), it
does the same thing as eventReactive() and observeEvent(). However, bindEvent() is more
flexible: it can be combined with bindCache(), and it can also be used with render functions (like
renderText() and renderPlot()).

Usage

bindEvent(
x,
...,
ignoreNULL = TRUE,
ignoreInit = FALSE,
once = FALSE,
label = NULL

)

Arguments

x An object to wrap so that is triggered only when a the specified event occurs.

... One or more expressions that represents the event; this can be a simple reactive
value like input$click, a call to a reactive expression like dataset(), or even
a complex expression inside curly braces. If there are multiple expressions in
the ..., then it will take a dependency on all of them.

ignoreNULL Whether the action should be triggered (or value calculated) when the input is
NULL. See Details.

ignoreInit If TRUE, then, when the eventified object is first created/initialized, don’t trigger
the action or (compute the value). The default is FALSE. See Details.

20 bindEvent

once Used only for observers. Whether this observer should be immediately de-
stroyed after the first time that the code in the observer is run. This pattern is
useful when you want to subscribe to a event that should only happen once.

label A label for the observer or reactive, useful for debugging.

Details

Shiny’s reactive programming framework is primarily designed for calculated values (reactive ex-
pressions) and side-effect-causing actions (observers) that respond to any of their inputs changing.
That’s often what is desired in Shiny apps, but not always: sometimes you want to wait for a specific
action to be taken from the user, like clicking an actionButton(), before calculating an expression
or taking an action. A reactive value or expression that is used to trigger other calculations in this
way is called an event.

These situations demand a more imperative, "event handling" style of programming that is possible–
but not particularly intuitive–using the reactive programming primitives observe() and isolate().
bindEvent() provides a straightforward API for event handling that wraps observe and isolate.

The ... arguments are captured as expressions and combined into an event expression. When this
event expression is invalidated (when its upstream reactive inputs change), that is an event, and it
will cause the original object’s code to execute.

Use bindEvent() with observe() whenever you want to perform an action in response to an event.
(This does the same thing as observeEvent(), which was available in Shiny prior to version 1.6.0.)
Note that "recalculate a value" does not generally count as performing an action – use reactive()
for that.

Use bindEvent() with reactive() to create a calculated value that only updates in response to an
event. This is just like a normal reactive expression except it ignores all the usual invalidations that
come from its reactive dependencies; it only invalidates in response to the given event. (This does
the same thing as eventReactive(), which was available in Shiny prior to version 1.6.0.)

bindEvent() is often used with bindCache().

ignoreNULL and ignoreInit

bindEvent() takes an ignoreNULL parameter that affects behavior when the event expression eval-
uates to NULL (or in the special case of an actionButton(), 0). In these cases, if ignoreNULL is
TRUE, then it will raise a silent validation error. This is useful behavior if you don’t want to do the
action or calculation when your app first starts, but wait for the user to initiate the action first (like
a "Submit" button); whereas ignoreNULL=FALSE is desirable if you want to initially perform the
action/calculation and just let the user re-initiate it (like a "Recalculate" button).

bindEvent() also takes an ignoreInit argument. By default, reactive expressions and observers
will run on the first reactive flush after they are created (except if, at that moment, the event expres-
sion evaluates to NULL and ignoreNULL is TRUE). But when responding to a click of an action button,
it may often be useful to set ignoreInit to TRUE. For example, if you’re setting up an observer to
respond to a dynamically created button, then ignoreInit = TRUE will guarantee that the action
will only be triggered when the button is actually clicked, instead of also being triggered when it
is created/initialized. Similarly, if you’re setting up a reactive that responds to a dynamically cre-
ated button used to refresh some data (which is then returned by that reactive), then you should
use reactive(...) %>% bindEvent(..., ignoreInit = TRUE) if you want to let the user decide

bindEvent 21

if/when they want to refresh the data (since, depending on the app, this may be a computationally
expensive operation).

Even though ignoreNULL and ignoreInit can be used for similar purposes they are independent
from one another. Here’s the result of combining these:

ignoreNULL = TRUE and ignoreInit = FALSE This is the default. This combination means that
reactive/observer code will run every time that event expression is not NULL. If, at the time of
creation, the event expression happens to not be NULL, then the code runs.

ignoreNULL = FALSE and ignoreInit = FALSE This combination means that reactive/observer code
will run every time no matter what.

ignoreNULL = FALSE and ignoreInit = TRUE This combination means that reactive/observer code
will not run at the time of creation (because ignoreInit = TRUE), but it will run every other
time.

ignoreNULL = TRUE and ignoreInit = TRUE This combination means that reactive/observer code
will not at the time of creation (because ignoreInit = TRUE). After that, the reactive/observer
code will run every time that the event expression is not NULL.

Types of objects

bindEvent() can be used with reactive expressions, observers, and shiny render functions.

When bindEvent() is used with reactive(), it creates a new reactive expression object.

When bindEvent() is used with observe(), it alters the observer in place. It can only be used
with observers which have not yet executed.

Combining events and caching

In many cases, it makes sense to use bindEvent() along with bindCache(), because they each can
reduce the amount of work done on the server. For example, you could have sliderInputs x and y and
a reactive() that performs a time-consuming operation with those values. Using bindCache()
can speed things up, especially if there are multiple users. But it might make sense to also not do
the computation until the user sets both x and y, and then clicks on an actionButton named go.

To use both caching and events, the object should first be passed to bindCache(), then bindEvent().
For example:

r <- reactive({
Sys.sleep(2) # Pretend this is an expensive computation
input$x * input$y

}) %>%
bindCache(input$x, input$y) %>%
bindEvent(input$go)

Anything that consumes r() will take a reactive dependency on the event expression given to
bindEvent(), and not the cache key expression given to bindCache(). In this case, it is just
input$go.

22 bookmarkButton

bookmarkButton Create a button for bookmarking/sharing

Description

A bookmarkButton is a actionButton() with a default label that consists of a link icon and the
text "Bookmark...". It is meant to be used for bookmarking state.

Usage

bookmarkButton(
label = "Bookmark...",
icon = shiny::icon("link", lib = "glyphicon"),
title = "Bookmark this application's state and get a URL for sharing.",
...,
id = "._bookmark_"

)

Arguments

label The contents of the button or link–usually a text label, but you could also use
any other HTML, like an image.

icon An optional icon() to appear on the button.

title A tooltip that is shown when the mouse cursor hovers over the button.

... Named attributes to be applied to the button or link.

id An ID for the bookmark button. The only time it is necessary to set the ID unless
you have more than one bookmark button in your application. If you specify an
input ID, it should be excluded from bookmarking with setBookmarkExclude(),
and you must create an observer that does the bookmarking when the button is
pressed. See the examples below.

See Also

enableBookmarking() for more examples.

Examples

Only run these examples in interactive sessions
if (interactive()) {

This example shows how to use multiple bookmark buttons. If you only need
a single bookmark button, see examples in ?enableBookmarking.
ui <- function(request) {

fluidPage(
tabsetPanel(id = "tabs",

tabPanel("One",
checkboxInput("chk1", "Checkbox 1"),

bootstrapLib 23

bookmarkButton(id = "bookmark1")
),
tabPanel("Two",

checkboxInput("chk2", "Checkbox 2"),
bookmarkButton(id = "bookmark2")

)
)

)
}
server <- function(input, output, session) {

Need to exclude the buttons from themselves being bookmarked
setBookmarkExclude(c("bookmark1", "bookmark2"))

Trigger bookmarking with either button
observeEvent(input$bookmark1, {

session$doBookmark()
})
observeEvent(input$bookmark2, {

session$doBookmark()
})

}
enableBookmarking(store = "url")
shinyApp(ui, server)
}

bootstrapLib Bootstrap libraries

Description

This function defines a set of web dependencies necessary for using Bootstrap components in a web
page.

Usage

bootstrapLib(theme = NULL)

Arguments

theme One of the following:

• NULL (the default), which implies a "stock" build of Bootstrap 3.
• A bslib::bs_theme() object. This can be used to replace a stock build of

Bootstrap 3 with a customized version of Bootstrap 3 or higher.
• A character string pointing to an alternative Bootstrap stylesheet (normally

a css file within the www directory, e.g. www/bootstrap.css).

24 bootstrapPage

Details

It isn’t necessary to call this function if you use bootstrapPage() or others which use bootstrapPage,
such fluidPage(), navbarPage(), fillPage(), etc, because they already include the Bootstrap
web dependencies.

bootstrapPage Create a Bootstrap page

Description

Create a Shiny UI page that loads the CSS and JavaScript for Bootstrap, and has no content in the
page body (other than what you provide).

Usage

bootstrapPage(..., title = NULL, theme = NULL, lang = NULL)

basicPage(...)

Arguments

... The contents of the document body.

title The browser window title (defaults to the host URL of the page)

theme One of the following:

• NULL (the default), which implies a "stock" build of Bootstrap 3.
• A bslib::bs_theme() object. This can be used to replace a stock build of

Bootstrap 3 with a customized version of Bootstrap 3 or higher.
• A character string pointing to an alternative Bootstrap stylesheet (normally

a css file within the www directory, e.g. www/bootstrap.css).

lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

Details

This function is primarily intended for users who are proficient in HTML/CSS, and know how to
lay out pages in Bootstrap. Most applications should use fluidPage() along with layout functions
like fluidRow() and sidebarLayout().

Value

A UI definition that can be passed to the shinyUI function.

Note

The basicPage function is deprecated, you should use the fluidPage() function instead.

https://getbootstrap.com/

brushedPoints 25

See Also

fluidPage(), fixedPage()

brushedPoints Find rows of data selected on an interactive plot.

Description

brushedPoints() returns rows from a data frame which are under a brush. nearPoints() returns
rows from a data frame which are near a click, hover, or double-click. Alternatively, set allRows
= TRUE to return all rows from the input data with an additional column selected_ that indicates
which rows of the would be selected.

Usage

brushedPoints(
df,
brush,
xvar = NULL,
yvar = NULL,
panelvar1 = NULL,
panelvar2 = NULL,
allRows = FALSE

)

nearPoints(
df,
coordinfo,
xvar = NULL,
yvar = NULL,
panelvar1 = NULL,
panelvar2 = NULL,
threshold = 5,
maxpoints = NULL,
addDist = FALSE,
allRows = FALSE

)

Arguments

df A data frame from which to select rows.
brush, coordinfo

The data from a brush or click/dblclick/hover event e.g. input$plot_brush,
input$plot_click.

xvar, yvar A string giving the name of the variable on the x or y axis. These are only
required for base graphics, and must be the name of a column in df.

26 brushedPoints

panelvar1, panelvar2
A string giving the name of a panel variable. For expert use only; in most cases
these will be automatically derived from the ggplot2 spec.

allRows If FALSE (the default) return a data frame containing the selected rows. If
TRUE, the input data frame will have a new column, selected_, which indicates
whether the row was selected or not.

threshold A maximum distance (in pixels) to the pointer location. Rows in the data frame
will be selected if the distance to the pointer is less than threshold.

maxpoints Maximum number of rows to return. If NULL (the default), will return all rows
within the threshold distance.

addDist If TRUE, add a column named dist_ that contains the distance from the coor-
dinate to the point, in pixels. When no pointer event has yet occurred, the value
of dist_ will be NA.

Value

A data frame based on df, containing the observations selected by the brush or near the click event.
For nearPoints(), the rows will be sorted by distance to the event.

If allRows = TRUE, then all rows will returned, along with a new selected_ column that indicates
whether or not the point was selected. The output from nearPoints() will no longer be sorted, but
you can set addDist = TRUE to get an additional column that gives the pixel distance to the pointer.

ggplot2

For plots created with ggplot2, it is not necessary to specify the column names to xvar, yvar,
panelvar1, and panelvar2 as that information can be automatically derived from the plot specifi-
cation.

Note, however, that this will not work if you use a computed column, like aes(speed/2, dist)).
Instead, we recommend that you modify the data first, and then make the plot with "raw" columns
in the modified data.

Brushing

If x or y column is a factor, then it will be coerced to an integer vector. If it is a character vector, then
it will be coerced to a factor and then integer vector. This means that the brush will be considered
to cover a given character/factor value when it covers the center value.

If the brush is operating in just the x or y directions (e.g., with brushOpts(direction = "x"), then
this function will filter out points using just the x or y variable, whichever is appropriate.

See Also

plotOutput() for example usage.

Examples

Not run:
Note that in practice, these examples would need to go in reactives
or observers.

brushOpts 27

This would select all points within 5 pixels of the click
nearPoints(mtcars, input$plot_click)

Select just the nearest point within 10 pixels of the click
nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1)

End(Not run)

brushOpts Create an object representing brushing options

Description

This generates an object representing brushing options, to be passed as the brush argument of
imageOutput() or plotOutput().

Usage

brushOpts(
id,
fill = "#9cf",
stroke = "#036",
opacity = 0.25,
delay = 300,
delayType = c("debounce", "throttle"),
clip = TRUE,
direction = c("xy", "x", "y"),
resetOnNew = FALSE

)

Arguments

id Input value name. For example, if the value is "plot_brush", then the coordi-
nates will be available as input$plot_brush. Multiple imageOutput/plotOutput
calls may share the same id value; brushing one image or plot will cause any
other brushes with the same id to disappear.

fill Fill color of the brush. If 'auto', it derives from the link color of the plot’s
HTML container (if thematic is enabled, and accent is a non-'auto' value,
that color is used instead).

stroke Outline color of the brush. If 'auto', it derives from the foreground color of the
plot’s HTML container (if thematic is enabled, and fg is a non-'auto' value,
that color is used instead).

opacity Opacity of the brush

delay How long to delay (in milliseconds) when debouncing or throttling, before send-
ing the brush data to the server.

28 busyIndicatorOptions

delayType The type of algorithm for limiting the number of brush events. Use "throttle"
to limit the number of brush events to one every delay milliseconds. Use
"debounce" to suspend events while the cursor is moving, and wait until the
cursor has been at rest for delay milliseconds before sending an event.

clip Should the brush area be clipped to the plotting area? If FALSE, then the user
will be able to brush outside the plotting area, as long as it is still inside the
image.

direction The direction for brushing. If "xy", the brush can be drawn and moved in both
x and y directions. If "x", or "y", the brush wil work horizontally or vertically.

resetOnNew When a new image is sent to the browser (via renderImage()), should the brush
be reset? The default, FALSE, is useful if you want to update the plot while
keeping the brush. Using TRUE is useful if you want to clear the brush whenever
the plot is updated.

See Also

clickOpts() for clicking events.

busyIndicatorOptions Customize busy indicator options

Description

Shiny automatically includes busy indicators, which more specifically means:

1. Calculating/recalculating outputs have a spinner overlay.

2. Outputs fade out/in when recalculating.

3. When no outputs are calculating/recalculating, but Shiny is busy doing something else (e.g., a
download, side-effect, etc), a page-level pulsing banner is shown.

This function allows you to customize the appearance of these busy indicators by including the result
of this function inside the app’s UI. Note that, unless spinner_selector (or fade_selector) is
specified, the spinner/fade customization applies to the parent element. If the customization should
instead apply to the entire page, set spinner_selector = 'html' and fade_selector = 'html'.

Usage

busyIndicatorOptions(
...,
spinner_type = NULL,
spinner_color = NULL,
spinner_size = NULL,
spinner_delay = NULL,
spinner_selector = NULL,
fade_opacity = NULL,
fade_selector = NULL,

busyIndicatorOptions 29

pulse_background = NULL,
pulse_height = NULL,
pulse_speed = NULL

)

Arguments

... Currently ignored.

spinner_type The type of spinner. Pre-bundled types include: ’ring’, ’ring2’, ’ring3’, ’bars’,
’bars2’, ’bars3’, ’pulse’, ’pulse2’, ’pulse3’, ’dots’, ’dots2’, ’dots3’.

A path to a local SVG file can also be provided. The SVG should adhere to the
following rules:

• The SVG itself should contain the animation.

• It should avoid absolute sizes (the spinner’s containing DOM element size
is set in CSS by spinner_size, so it should fill that container).

• It should avoid setting absolute colors (the spinner’s containing DOM ele-
ment color is set in CSS by spinner_color, so it should inherit that color).

spinner_color The color of the spinner. This can be any valid CSS color. Defaults to the app’s
"primary" color if Bootstrap is on the page.

spinner_size The size of the spinner. This can be any valid CSS size.

spinner_delay The amount of time to wait before showing the spinner. This can be any valid
CSS time and can be useful for not showing the spinner if the computation fin-
ishes quickly.

spinner_selector

A character string containing a CSS selector for scoping the spinner customiza-
tion. The default (NULL) will apply the spinner customization to the parent ele-
ment of the spinner.

fade_opacity The opacity (a number between 0 and 1) for recalculating output. Set to 1 to
"disable" the fade.

fade_selector A character string containing a CSS selector for scoping the spinner customiza-
tion. The default (NULL) will apply the spinner customization to the parent ele-
ment of the spinner.

pulse_background

A CSS background definition for the pulse. The default uses a linear-gradient of
the theme’s indigo, purple, and pink colors.

pulse_height The height of the pulsing banner. This can be any valid CSS size.

pulse_speed The speed of the pulsing banner. This can be any valid CSS time.

See Also

useBusyIndicators() to disable/enable busy indicators.

https://developer.mozilla.org/en-US/docs/Web/CSS/gradient/linear-gradient

30 callModule

Examples

library(bslib)

card_ui <- function(id, spinner_type = id) {
card(
busyIndicatorOptions(spinner_type = spinner_type),
card_header(paste("Spinner:", spinner_type)),
plotOutput(shiny::NS(id, "plot"))

)
}

card_server <- function(id, simulate = reactive()) {
moduleServer(

id = id,
function(input, output, session) {

output$plot <- renderPlot({
Sys.sleep(1)
simulate()
plot(x = rnorm(100), y = rnorm(100))

})
}

)
}

ui <- page_fillable(
useBusyIndicators(),
input_task_button("simulate", "Simulate", icon = icon("refresh")),
layout_columns(

card_ui("ring"),
card_ui("bars"),
card_ui("dots"),
card_ui("pulse"),
col_widths = 6

)
)

server <- function(input, output, session) {
simulate <- reactive(input$simulate)
card_server("ring", simulate)
card_server("bars", simulate)
card_server("dots", simulate)
card_server("pulse", simulate)

}

shinyApp(ui, server)

callModule Invoke a Shiny module

checkboxGroupInput 31

Description

Note: As of Shiny 1.5.0, we recommend using moduleServer() instead of callModule(), because
the syntax is a little easier to understand, and modules created with moduleServer can be tested
with testServer().

Usage

callModule(module, id, ..., session = getDefaultReactiveDomain())

Arguments

module A Shiny module server function

id An ID string that corresponds with the ID used to call the module’s UI function

... Additional parameters to pass to module server function

session Session from which to make a child scope (the default should almost always be
used)

Value

The return value, if any, from executing the module server function

checkboxGroupInput Checkbox Group Input Control

Description

Create a group of checkboxes that can be used to toggle multiple choices independently. The server
will receive the input as a character vector of the selected values.

Usage

checkboxGroupInput(
inputId,
label,
choices = NULL,
selected = NULL,
inline = FALSE,
width = NULL,
choiceNames = NULL,
choiceValues = NULL

)

32 checkboxGroupInput

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to show checkboxes for. If elements of the list are named then that
name rather than the value is displayed to the user. If this argument is provided,
then choiceNames and choiceValues must not be provided, and vice-versa.
The values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

selected The values that should be initially selected, if any.

inline If TRUE, render the choices inline (i.e. horizontally)

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().
choiceNames, choiceValues

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

Value

A list of HTML elements that can be added to a UI definition.

Server value

Character vector of values corresponding to the boxes that are checked.

See Also

checkboxInput(), updateCheckboxGroupInput()

Other input elements: actionButton(), checkboxInput(), dateInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
checkboxGroupInput("variable", "Variables to show:",

c("Cylinders" = "cyl",
"Transmission" = "am",
"Gears" = "gear")),

tableOutput("data")
)

checkboxInput 33

server <- function(input, output, session) {
output$data <- renderTable({
mtcars[, c("mpg", input$variable), drop = FALSE]

}, rownames = TRUE)
}

shinyApp(ui, server)

ui <- fluidPage(
checkboxGroupInput("icons", "Choose icons:",

choiceNames =
list(icon("calendar"), icon("bed"),

icon("cog"), icon("bug")),
choiceValues =

list("calendar", "bed", "cog", "bug")
),
textOutput("txt")

)

server <- function(input, output, session) {
output$txt <- renderText({
icons <- paste(input$icons, collapse = ", ")
paste("You chose", icons)

})
}

shinyApp(ui, server)
}

checkboxInput Checkbox Input Control

Description

Create a checkbox that can be used to specify logical values.

Usage

checkboxInput(inputId, label, value = FALSE, width = NULL)

Arguments

inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
value Initial value (TRUE or FALSE).
width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

Value

A checkbox control that can be added to a UI definition.

34 clickOpts

Server value

TRUE if checked, FALSE otherwise.

See Also

checkboxGroupInput(), updateCheckboxInput()

Other input elements: actionButton(), checkboxGroupInput(), dateInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
checkboxInput("somevalue", "Some value", FALSE),
verbatimTextOutput("value")

)
server <- function(input, output) {

output$value <- renderText({ input$somevalue })
}
shinyApp(ui, server)
}

clickOpts Control interactive plot point events

Description

These functions give control over the click, dblClick and hover events generated by imageOutput()
and plotOutput().

Usage

clickOpts(id, clip = TRUE)

dblclickOpts(id, clip = TRUE, delay = 400)

hoverOpts(
id,
delay = 300,
delayType = c("debounce", "throttle"),
clip = TRUE,
nullOutside = TRUE

)

column 35

Arguments

id Input value name. For example, if the value is "plot_click", then the event
data will be available as input$plot_click.

clip Should the click area be clipped to the plotting area? If FALSE, then the server
will receive click events even when the mouse is outside the plotting area, as
long as it is still inside the image.

delay For dblClickOpts(): the maximum delay (in ms) between a pair clicks for
them to be counted as a double-click.
For hoverOpts(): how long to delay (in ms) when debouncing or throttling
before sending the mouse location to the server.

delayType The type of algorithm for limiting the number of hover events. Use "throttle"
to limit the number of hover events to one every delay milliseconds. Use
"debounce" to suspend events while the cursor is moving, and wait until the
cursor has been at rest for delay milliseconds before sending an event.

nullOutside If TRUE (the default), the value will be set to NULL when the mouse exits the
plotting area. If FALSE, the value will stop changing when the cursor exits the
plotting area.

See Also

brushOpts() for brushing events.

column Create a column within a UI definition

Description

Create a column for use within a fluidRow() or fixedRow()

Usage

column(width, ..., offset = 0)

Arguments

width The grid width of the column (must be between 1 and 12)

... Elements to include within the column

offset The number of columns to offset this column from the end of the previous col-
umn.

Value

A column that can be included within a fluidRow() or fixedRow().

36 conditionalPanel

See Also

fluidRow(), fixedRow().

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
fluidRow(
column(4,

sliderInput("obs", "Number of observations:",
min = 1, max = 1000, value = 500)

),
column(8,

plotOutput("distPlot")
)

)
)

server <- function(input, output) {
output$distPlot <- renderPlot({

hist(rnorm(input$obs))
})

}

shinyApp(ui, server)

ui <- fluidPage(
fluidRow(

column(width = 4,
"4"

),
column(width = 3, offset = 2,

"3 offset 2"
)

)
)
shinyApp(ui, server = function(input, output) { })
}

conditionalPanel Conditional Panel

Description

Creates a panel that is visible or not, depending on the value of a JavaScript expression. The JS
expression is evaluated once at startup and whenever Shiny detects a relevant change in input/output.

conditionalPanel 37

Usage

conditionalPanel(condition, ..., ns = NS(NULL))

Arguments

condition A JavaScript expression that will be evaluated repeatedly to determine whether
the panel should be displayed.

... Elements to include in the panel.

ns The namespace() object of the current module, if any.

Details

In the JS expression, you can refer to input and output JavaScript objects that contain the current
values of input and output. For example, if you have an input with an id of foo, then you can use
input.foo to read its value. (Be sure not to modify the input/output objects, as this may cause
unpredictable behavior.)

Note

You are not recommended to use special JavaScript characters such as a period . in the input
id’s, but if you do use them anyway, for example, inputId = "foo.bar", you will have to use
input["foo.bar"] instead of input.foo.bar to read the input value.

Examples

Only run this example in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sidebarPanel(

selectInput("plotType", "Plot Type",
c(Scatter = "scatter", Histogram = "hist")

),
Only show this panel if the plot type is a histogram
conditionalPanel(

condition = "input.plotType == 'hist'",
selectInput(

"breaks", "Breaks",
c("Sturges", "Scott", "Freedman-Diaconis", "[Custom]" = "custom")

),
Only show this panel if Custom is selected
conditionalPanel(

condition = "input.breaks == 'custom'",
sliderInput("breakCount", "Break Count", min = 1, max = 50, value = 10)

)
)

),
mainPanel(

plotOutput("plot")
)

)

38 createRenderFunction

server <- function(input, output) {
x <- rnorm(100)
y <- rnorm(100)

output$plot <- renderPlot({
if (input$plotType == "scatter") {

plot(x, y)
} else {

breaks <- input$breaks
if (breaks == "custom") {

breaks <- input$breakCount
}

hist(x, breaks = breaks)
}

})
}

shinyApp(ui, server)
}

createRenderFunction Implement custom render functions

Description

Developer-facing utilities for implementing a custom renderXXX() function. Before using these
utilities directly, consider using the htmlwidgets package to implement custom outputs (i.e., cus-
tom renderXXX()/xxxOutput() functions). That said, these utilities can be used more directly
if a full-blown htmlwidget isn’t needed and/or the user-supplied reactive expression needs to be
wrapped in additional call(s).

Usage

createRenderFunction(
func,
transform = function(value, session, name, ...) value,
outputFunc = NULL,
outputArgs = NULL,
cacheHint = "auto",
cacheWriteHook = NULL,
cacheReadHook = NULL

)

quoToFunction(q, label = sys.call(-1)[[1]], ..stacktraceon = FALSE)

installExprFunction(
expr,

http://www.htmlwidgets.org/develop_intro.html

createRenderFunction 39

name,
eval.env = parent.frame(2),
quoted = FALSE,
assign.env = parent.frame(1),
label = sys.call(-1)[[1]],
wrappedWithLabel = TRUE,
..stacktraceon = FALSE

)

Arguments

func A function without parameters, that returns user data. If the returned value is a
promise, then the render function will proceed in async mode.

transform A function that takes four arguments: value, session, name, and ... (for
future-proofing). This function will be invoked each time a value is returned
from func, and is responsible for changing the value into a JSON-ready value
to be JSON-encoded and sent to the browser.

outputFunc The UI function that is used (or most commonly used) with this render function.
This can be used in R Markdown documents to create complete output widgets
out of just the render function.

outputArgs A list of arguments to pass to the uiFunc. Render functions should include
outputArgs = list() in their own parameter list, and pass through the value to
markRenderFunction, to allow app authors to customize outputs. (Currently,
this is only supported for dynamically generated UIs, such as those created by
Shiny code snippets embedded in R Markdown documents).

cacheHint One of "auto", FALSE, or some other information to identify this instance for
caching using bindCache(). If "auto", it will try to automatically infer caching
information. If FALSE, do not allow caching for the object. Some render func-
tions (such as renderPlot) contain internal state that makes them unsuitable for
caching.

cacheWriteHook Used if the render function is passed to bindCache(). This is an optional call-
back function to invoke before saving the value from the render function to
the cache. This function must accept one argument, the value returned from
renderFunc, and should return the value to store in the cache.

cacheReadHook Used if the render function is passed to bindCache(). This is an optional
callback function to invoke after reading a value from the cache (if there is
a cache hit). The function will be passed one argument, the value retrieved
from the cache. This can be useful when some side effect needs to occur for
a render function to behave correctly. For example, some render functions call
createWebDependency() so that Shiny is able to serve JS and CSS resources.

q Quosure of the expression x. When capturing expressions to create your quo-
sure, it is recommended to use rlang::enquo0() to not unquote the object too
early. See rlang::enquo0() for more details.

label A label for the object to be shown in the debugger. Defaults to the name of the
calling function.

expr A quoted or unquoted expression, or a quosure.

40 createRenderFunction

name The name the function should be given

eval.env The desired environment for the function. Defaults to the calling environment
two steps back.

quoted Is the expression quoted?

assign.env The environment in which the function should be assigned.
wrappedWithLabel, ..stacktraceon

Advanced use only. For stack manipulation purposes; see stacktrace().

Details

To implement a custom renderXXX() function, essentially 2 things are needed:

1. Capture the user’s reactive expression as a function.

• New renderXXX() functions can use quoToFunction() for this, but already existing
renderXXX() functions that contain env and quoted parameters may want to continue
using installExprFunction() for better legacy support (see examples).

2. Flag the resulting function (from 1) as a Shiny rendering function and also provide a UI con-
tainer for displaying the result of the rendering function.

• createRenderFunction() is currently recommended (instead of markRenderFunction())
for this step (see examples).

Value

An annotated render function, ready to be assigned to an output slot.

Functions

• quoToFunction(): convert a quosure to a function.

• installExprFunction(): converts a user’s reactive expr into a function that’s assigned to a
name in the assign.env.

Examples

A custom render function that repeats the supplied value 3 times
renderTriple <- function(expr) {

Wrap user-supplied reactive expression into a function
func <- quoToFunction(rlang::enquo0(expr))

createRenderFunction(
func,
transform = function(value, session, name, ...) {

paste(rep(value, 3), collapse=", ")
},
outputFunc = textOutput

)
}

For better legacy support, consider using installExprFunction() over quoToFunction()
renderTripleLegacy <- function(expr, env = parent.frame(), quoted = FALSE) {

createWebDependency 41

func <- installExprFunction(expr, "func", env, quoted)

createRenderFunction(
func,
transform = function(value, session, name, ...) {

paste(rep(value, 3), collapse=", ")
},
outputFunc = textOutput

)
}

Test render function from the console
reactiveConsole(TRUE)

v <- reactiveVal("basic")
r <- renderTriple({ v() })
r()
#> [1] "basic, basic, basic"

User can supply quoted code via rlang::quo(). Note that evaluation of the
expression happens when r2() is invoked, not when r2 is created.
q <- rlang::quo({ v() })
r2 <- rlang::inject(renderTriple(!!q))
v("rlang")
r2()
#> [1] "rlang, rlang, rlang"

Supplying quoted code without rlang::quo() requires installExprFunction()
expr <- quote({ v() })
r3 <- renderTripleLegacy(expr, quoted = TRUE)
v("legacy")
r3()
#> [1] "legacy, legacy, legacy"

The legacy approach also supports with quosures (env is ignored in this case)
q <- rlang::quo({ v() })
r4 <- renderTripleLegacy(q, quoted = TRUE)
v("legacy-rlang")
r4()
#> [1] "legacy-rlang, legacy-rlang, legacy-rlang"

Turn off reactivity in the console
reactiveConsole(FALSE)

createWebDependency Create a web dependency

42 dateInput

Description

Ensure that a file-based HTML dependency (from the htmltools package) can be served over Shiny’s
HTTP server. This function works by using addResourcePath() to map the HTML dependency’s
directory to a URL.

Usage

createWebDependency(dependency, scrubFile = TRUE)

Arguments

dependency A single HTML dependency object, created using htmltools::htmlDependency().
If the src value is named, then href and/or file names must be present.

scrubFile If TRUE (the default), remove src$file for the dependency. This prevents the
local file path from being sent to the client when dynamic web dependencies are
used. If FALSE, don’t remove src$file. Setting it to FALSE should be needed
only in very unusual cases.

Value

A single HTML dependency object that has an href-named element in its src.

dateInput Create date input

Description

Creates a text input which, when clicked on, brings up a calendar that the user can click on to select
dates.

Usage

dateInput(
inputId,
label,
value = NULL,
min = NULL,
max = NULL,
format = "yyyy-mm-dd",
startview = "month",
weekstart = 0,
language = "en",
width = NULL,
autoclose = TRUE,
datesdisabled = NULL,
daysofweekdisabled = NULL

)

dateInput 43

Arguments

inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
value The starting date. Either a Date object, or a string in yyyy-mm-dd format. If

NULL (the default), will use the current date in the client’s time zone.
min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd

format.
max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd

format.
format The format of the date to display in the browser. Defaults to "yyyy-mm-dd".
startview The date range shown when the input object is first clicked. Can be "month"

(the default), "year", or "decade".
weekstart Which day is the start of the week. Should be an integer from 0 (Sunday) to 6

(Saturday).
language The language used for month and day names. Default is "en". Other valid

values include "ar", "az", "bg", "bs", "ca", "cs", "cy", "da", "de", "el", "en-AU",
"en-GB", "eo", "es", "et", "eu", "fa", "fi", "fo", "fr-CH", "fr", "gl", "he", "hr",
"hu", "hy", "id", "is", "it-CH", "it", "ja", "ka", "kh", "kk", "ko", "kr", "lt", "lv",
"me", "mk", "mn", "ms", "nb", "nl-BE", "nl", "no", "pl", "pt-BR", "pt", "ro",
"rs-latin", "rs", "ru", "sk", "sl", "sq", "sr-latin", "sr", "sv", "sw", "th", "tr", "uk",
"vi", "zh-CN", and "zh-TW".

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().
autoclose Whether or not to close the datepicker immediately when a date is selected.
datesdisabled Which dates should be disabled. Either a Date object, or a string in yyyy-mm-dd

format.
daysofweekdisabled

Days of the week that should be disabled. Should be a integer vector with values
from 0 (Sunday) to 6 (Saturday).

Details

The date format string specifies how the date will be displayed in the browser. It allows the follow-
ing values:

• yy Year without century (12)
• yyyy Year with century (2012)
• mm Month number, with leading zero (01-12)
• m Month number, without leading zero (1-12)
• M Abbreviated month name
• MM Full month name
• dd Day of month with leading zero
• d Day of month without leading zero
• D Abbreviated weekday name
• DD Full weekday name

44 dateInput

Server value

A Date vector of length 1.

See Also

dateRangeInput(), updateDateInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
dateInput("date1", "Date:", value = "2012-02-29"),

Default value is the date in client's time zone
dateInput("date2", "Date:"),

value is always yyyy-mm-dd, even if the display format is different
dateInput("date3", "Date:", value = "2012-02-29", format = "mm/dd/yy"),

Pass in a Date object
dateInput("date4", "Date:", value = Sys.Date()-10),

Use different language and different first day of week
dateInput("date5", "Date:",

language = "ru",
weekstart = 1),

Start with decade view instead of default month view
dateInput("date6", "Date:",

startview = "decade"),

Disable Mondays and Tuesdays.
dateInput("date7", "Date:", daysofweekdisabled = c(1,2)),

Disable specific dates.
dateInput("date8", "Date:", value = "2012-02-29",

datesdisabled = c("2012-03-01", "2012-03-02"))
)

shinyApp(ui, server = function(input, output) { })
}

dateRangeInput 45

dateRangeInput Create date range input

Description

Creates a pair of text inputs which, when clicked on, bring up calendars that the user can click on
to select dates.

Usage

dateRangeInput(
inputId,
label,
start = NULL,
end = NULL,
min = NULL,
max = NULL,
format = "yyyy-mm-dd",
startview = "month",
weekstart = 0,
language = "en",
separator = " to ",
width = NULL,
autoclose = TRUE

)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

start The initial start date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.

end The initial end date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.

format The format of the date to display in the browser. Defaults to "yyyy-mm-dd".

startview The date range shown when the input object is first clicked. Can be "month"
(the default), "year", or "decade".

weekstart Which day is the start of the week. Should be an integer from 0 (Sunday) to 6
(Saturday).

46 dateRangeInput

language The language used for month and day names. Default is "en". Other valid
values include "ar", "az", "bg", "bs", "ca", "cs", "cy", "da", "de", "el", "en-AU",
"en-GB", "eo", "es", "et", "eu", "fa", "fi", "fo", "fr-CH", "fr", "gl", "he", "hr",
"hu", "hy", "id", "is", "it-CH", "it", "ja", "ka", "kh", "kk", "ko", "kr", "lt", "lv",
"me", "mk", "mn", "ms", "nb", "nl-BE", "nl", "no", "pl", "pt-BR", "pt", "ro",
"rs-latin", "rs", "ru", "sk", "sl", "sq", "sr-latin", "sr", "sv", "sw", "th", "tr", "uk",
"vi", "zh-CN", and "zh-TW".

separator String to display between the start and end input boxes.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

autoclose Whether or not to close the datepicker immediately when a date is selected.

Details

The date format string specifies how the date will be displayed in the browser. It allows the follow-
ing values:

• yy Year without century (12)

• yyyy Year with century (2012)

• mm Month number, with leading zero (01-12)

• m Month number, without leading zero (1-12)

• M Abbreviated month name

• MM Full month name

• dd Day of month with leading zero

• d Day of month without leading zero

• D Abbreviated weekday name

• DD Full weekday name

Server value

A Date vector of length 2.

See Also

dateInput(), updateDateRangeInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
dateRangeInput("daterange1", "Date range:",

start = "2001-01-01",

debounce 47

end = "2010-12-31"),

Default start and end is the current date in the client's time zone
dateRangeInput("daterange2", "Date range:"),

start and end are always specified in yyyy-mm-dd, even if the display
format is different
dateRangeInput("daterange3", "Date range:",

start = "2001-01-01",
end = "2010-12-31",
min = "2001-01-01",
max = "2012-12-21",
format = "mm/dd/yy",
separator = " - "),

Pass in Date objects
dateRangeInput("daterange4", "Date range:",

start = Sys.Date()-10,
end = Sys.Date()+10),

Use different language and different first day of week
dateRangeInput("daterange5", "Date range:",

language = "de",
weekstart = 1),

Start with decade view instead of default month view
dateRangeInput("daterange6", "Date range:",

startview = "decade")
)

shinyApp(ui, server = function(input, output) { })
}

debounce Slow down a reactive expression with debounce/throttle

Description

Transforms a reactive expression by preventing its invalidation signals from being sent unnecessar-
ily often. This lets you ignore a very "chatty" reactive expression until it becomes idle, which is
useful when the intermediate values don’t matter as much as the final value, and the downstream
calculations that depend on the reactive expression take a long time. debounce and throttle use
different algorithms for slowing down invalidation signals; see Details.

Usage

debounce(r, millis, priority = 100, domain = getDefaultReactiveDomain())

throttle(r, millis, priority = 100, domain = getDefaultReactiveDomain())

48 debounce

Arguments

r A reactive expression (that invalidates too often).

millis The debounce/throttle time window. You may optionally pass a no-arg function
or reactive expression instead, e.g. to let the end-user control the time window.

priority Debounce/throttle is implemented under the hood using observers. Use this
parameter to set the priority of these observers. Generally, this should be higher
than the priorities of downstream observers and outputs (which default to zero).

domain See domains.

Details

This is not a true debounce/throttle in that it will not prevent r from being called many times (in fact
it may be called more times than usual), but rather, the reactive invalidation signal that is produced
by r is debounced/throttled instead. Therefore, these functions should be used when r is cheap but
the things it will trigger (downstream outputs and reactives) are expensive.

Debouncing means that every invalidation from r will be held for the specified time window. If r
invalidates again within that time window, then the timer starts over again. This means that as long
as invalidations continually arrive from r within the time window, the debounced reactive will not
invalidate at all. Only after the invalidations stop (or slow down sufficiently) will the downstream
invalidation be sent.
ooo-oo-oo---- => -----------o-

(In this graphical depiction, each character represents a unit of time, and the time window is 3
characters.)

Throttling, on the other hand, delays invalidation if the throttled reactive recently (within the time
window) invalidated. New r invalidations do not reset the time window. This means that if in-
validations continually come from r within the time window, the throttled reactive will invalidate
regularly, at a rate equal to or slower than the time window.
ooo-oo-oo---- => o--o--o--o---

Limitations

Because R is single threaded, we can’t come close to guaranteeing that the timing of debounce/throttle
(or any other timing-related functions in Shiny) will be consistent or accurate; at the time we want
to emit an invalidation signal, R may be performing a different task and we have no way to interrupt
it (nor would we necessarily want to if we could). Therefore, it’s best to think of the time windows
you pass to these functions as minimums.

You may also see undesirable behavior if the amount of time spent doing downstream processing
for each change approaches or exceeds the time window: in this case, debounce/throttle may not
have any effect, as the time each subsequent event is considered is already after the time window
has expired.

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

devmode 49

library(shiny)
library(magrittr)

ui <- fluidPage(
plotOutput("plot", click = clickOpts("hover")),
helpText("Quickly click on the plot above, while watching the result table below:"),
tableOutput("result")

)

server <- function(input, output, session) {
hover <- reactive({
if (is.null(input$hover))

list(x = NA, y = NA)
else

input$hover
})
hover_d <- hover %>% debounce(1000)
hover_t <- hover %>% throttle(1000)

output$plot <- renderPlot({
plot(cars)

})

output$result <- renderTable({
data.frame(

mode = c("raw", "throttle", "debounce"),
x = c(hover()$x, hover_t()$x, hover_d()$x),
y = c(hover()$y, hover_t()$y, hover_d()$y)

)
})

}

shinyApp(ui, server)
}

devmode Shiny Developer Mode

Description

[Experimental]

Developer Mode enables a number of options() to make a developer’s life easier, like enabling
non-minified JS and printing messages about deprecated functions and options.

Shiny Developer Mode can be enabled by calling devmode(TRUE) and disabled by calling devmode(FALSE).

Please see the function descriptions for more details.

50 devmode

Usage

devmode(
devmode = getOption("shiny.devmode", TRUE),
verbose = getOption("shiny.devmode.verbose", TRUE)

)

in_devmode()

with_devmode(devmode, code, verbose = getOption("shiny.devmode.verbose", TRUE))

devmode_inform(
message,
.frequency = "regularly",
.frequency_id = message,
.file = stderr(),
...

)

register_devmode_option(name, devmode_message = NULL, devmode_default = NULL)

get_devmode_option(
name,
default = NULL,
devmode_default = missing_arg(),
devmode_message = missing_arg()

)

Arguments

devmode Logical value which should be set to TRUE to enable Shiny Developer Mode
verbose Logical value which should be set to TRUE display Shiny Developer messages
code Code to execute with the temporary Dev Mode options set
message Developer Mode message to be sent to rlang::inform()

.frequency Frequency of the Developer Mode message used with rlang::inform(). De-
faults to once every 8 hours.

.frequency_id rlang::inform() message identifier. Defaults to message.

.file Output connection for rlang::inform(). Defaults to stderr()

... Parameters passed to rlang::inform()

name Name of option to look for in options()
devmode_message

Message to display once every 8 hours when utilizing the devmode_default
value. If devmode_message is missing, the registered devmode_message value
be used.

devmode_default

Default value to return if in_devmode() returns TRUE and the specified option
is not set in options(). For get_devmode_option(), if devmode_default is
missing, the registered devmode_default value will be used.

devmode 51

default Default value to return if in_devmode() returns TRUE and the specified option
is not set in options().

Functions

• devmode(): Function to set two options to enable/disable Shiny Developer Mode and Devel-
oper messages

• in_devmode(): Determines if Shiny is in Developer Mode. If the getOption("shiny.devmode")
is set to TRUE and not in testing inside testthat, then Shiny Developer Mode is enabled.

• with_devmode(): Temporarily set Shiny Developer Mode and Developer message verbosity

• devmode_inform(): If Shiny Developer Mode and verbosity are enabled, displays a message
once every 8 hrs (by default)

• register_devmode_option(): Registers a Shiny Developer Mode option with an updated
value and Developer message. This registration method allows package authors to write one
message in a single location.
For example, the following Shiny Developer Mode options are registered:

Reload the Shiny app when a sourced R file changes
register_devmode_option(
"shiny.autoreload",
"Turning on shiny autoreload. To disable, call `options(shiny.autoreload = FALSE)`",
devmode_default = TRUE

)

Use the unminified Shiny JavaScript file, `shiny.js`
register_devmode_option(
"shiny.minified",
"Using full shiny javascript file. To use the minified version, call `options(shiny.minified = TRUE)`",
devmode_default = FALSE

)

Display the full stack trace when errors occur during Shiny app execution
register_devmode_option(
"shiny.fullstacktrace",
"Turning on full stack trace. To disable, call `options(shiny.fullstacktrace = FALSE)`",
devmode_default = TRUE

)

Other known, non-Shiny Developer Mode options:

– Sass:

Display the full stack trace when errors occur during Shiny app execution
register_devmode_option(
"sass.cache",
"Turning off sass cache. To use default caching, call `options(sass.cache = TRUE)`",
devmode_default = FALSE

)

52 devmode

• get_devmode_option(): Provides a consistent way to change the expected getOption()
behavior when Developer Mode is enabled. This method is very similar to getOption()
where the globally set option takes precedence. See section "Avoiding direct dependency on
shiny" for get_devmode_option() implementation details.
Package developers: Register your Dev Mode option using register_devmode_option()
to avoid supplying the same devmode_default and devmode_message values throughout your
package. (This requires a shiny dependency.)

Avoiding direct dependency on shiny

The methods explained in this help file act independently from the rest of Shiny but are included
to provide blue prints for your own packages. If your package already has (or is willing to take)
a dependency on Shiny, we recommend using the exported Shiny methods for consistent behavior.
Note that if you use exported Shiny methods, it will cause the Shiny package to load. This may be
undesirable if your code will be used in (for example) R Markdown documents that do not have a
Shiny runtime (runtime: shiny).

If your package can not take a dependency on Shiny, we recommending re-implementing these two
functions:

1. in_devmode():
This function should return TRUE if getOption("shiny.devmode") is set. In addition, we
strongly recommend that it also checks to make sure testthat is not testing.

in_devmode <- function() {
isTRUE(getOption("shiny.devmode", FALSE)) &&
!identical(Sys.getenv("TESTTHAT"), "true")

}

2. get_devmode_option(name, default, devmode_default, devmode_message):
This function is similar to getOption(name, default), but when the option is not set, the
default value changes depending on the Dev Mode. get_devmode_option() should be im-
plemented as follows:

• If not in Dev Mode:
– Return getOption(name, default).

• If in Dev Mode:
– Get the global option getOption(name) value.
– If the global option value is set:

* Return the value.
– If the global option value is not set:

* Notify the developer that the Dev Mode default value will be used.

* Return the Dev Mode default value.

When notifying the developer that the default value has changed, we strongly recommend dis-
playing a message (devmode_message) to stderr() once every 8 hours using rlang::inform().
This will keep the author up to date as to which Dev Mode options are being altered. To al-
low developers a chance to disable Dev Mode messages, the message should be skipped if
getOption("shiny.devmode.verbose", TRUE) is not TRUE.

devmode 53

get_devmode_option <- function(name, default = NULL, devmode_default, devmode_message) {
if (!in_devmode()) {
Dev Mode disabled, act like `getOption()`
return(getOption(name, default = default))

}

Dev Mode enabled, update the default value for `getOption()`
getOption(name, default = {
Notify developer
if (
!missing(devmode_message) &&
!is.null(devmode_message) &&
getOption("shiny.devmode.verbose", TRUE)

) {
rlang::inform(
message = devmode_message,
.frequency = "regularly",
.frequency_id = devmode_message,
.file = stderr()

)
}

Return Dev Mode default value `devmode_default`
devmode_default

})
}

The remaining functions in this file are used for author convenience and are not recommended for
all reimplementation situations.

Examples

Enable Shiny Developer mode
devmode()

in_devmode() # TRUE/FALSE?

Execute code in a temporary shiny dev mode
with_devmode(TRUE, in_devmode()) # TRUE

Ex: Within shiny, we register the option "shiny.minified"
to default to `FALSE` when in Dev Mode
Not run: register_devmode_option(

"shiny.minified",
devmode_message = paste0(
"Using full shiny javascript file. ",
"To use the minified version, call `options(shiny.minified = TRUE)`"

),
devmode_default = FALSE

)
End(Not run)

54 domains

Used within `shiny::runApp(launch.browser)`
get_devmode_option("shiny.minified", TRUE) # TRUE if Dev mode is off
is_minified <- with_devmode(TRUE, {

get_devmode_option("shiny.minified", TRUE)
})
is_minified # FALSE

domains Reactive domains

Description

Reactive domains are a mechanism for establishing ownership over reactive primitives (like reactive
expressions and observers), even if the set of reactive primitives is dynamically created. This is
useful for lifetime management (i.e. destroying observers when the Shiny session that created them
ends) and error handling.

Usage

getDefaultReactiveDomain()

withReactiveDomain(domain, expr)

onReactiveDomainEnded(domain, callback, failIfNull = FALSE)

Arguments

domain A valid domain object (for example, a Shiny session), or NULL
expr An expression to evaluate under domain
callback A callback function to be invoked
failIfNull If TRUE then an error is given if the domain is NULL

Details

At any given time, there can be either a single "default" reactive domain object, or none (i.e. the
reactive domain object is NULL). You can access the current default reactive domain by calling
getDefaultReactiveDomain.

Unless you specify otherwise, newly created observers and reactive expressions will be assigned
to the current default domain (if any). You can override this assignment by providing an explicit
domain argument to reactive() or observe().

For advanced usage, it’s possible to override the default domain using withReactiveDomain. The
domain argument will be made the default domain while expr is evaluated.

Implementers of new reactive primitives can use onReactiveDomainEnded as a convenience func-
tion for registering callbacks. If the reactive domain is NULL and failIfNull is FALSE, then the
callback will never be invoked.

downloadButton 55

downloadButton Create a download button or link

Description

Use these functions to create a download button or link; when clicked, it will initiate a browser
download. The filename and contents are specified by the corresponding downloadHandler()
defined in the server function.

Usage

downloadButton(
outputId,
label = "Download",
class = NULL,
...,
icon = shiny::icon("download")

)

downloadLink(outputId, label = "Download", class = NULL, ...)

Arguments

outputId The name of the output slot that the downloadHandler is assigned to.

label The label that should appear on the button.

class Additional CSS classes to apply to the tag, if any.

... Other arguments to pass to the container tag function.

icon An icon() to appear on the button. Default is icon("download").

See Also

downloadHandler()

Examples

Not run:
ui <- fluidPage(

p("Choose a dataset to download."),
selectInput("dataset", "Dataset", choices = c("mtcars", "airquality")),
downloadButton("downloadData", "Download")

)

server <- function(input, output) {
The requested dataset
data <- reactive({
get(input$dataset)

})

56 downloadHandler

output$downloadData <- downloadHandler(
filename = function() {

Use the selected dataset as the suggested file name
paste0(input$dataset, ".csv")

},
content = function(file) {

Write the dataset to the `file` that will be downloaded
write.csv(data(), file)

}
)

}

shinyApp(ui, server)

End(Not run)

downloadHandler File Downloads

Description

Allows content from the Shiny application to be made available to the user as file downloads (for
example, downloading the currently visible data as a CSV file). Both filename and contents can be
calculated dynamically at the time the user initiates the download. Assign the return value to a slot
on output in your server function, and in the UI use downloadButton() or downloadLink() to
make the download available.

Usage

downloadHandler(filename, content, contentType = NULL, outputArgs = list())

Arguments

filename A string of the filename, including extension, that the user’s web browser should
default to when downloading the file; or a function that returns such a string.
(Reactive values and functions may be used from this function.)

content A function that takes a single argument file that is a file path (string) of a
nonexistent temp file, and writes the content to that file path. (Reactive values
and functions may be used from this function.)

contentType A string of the download’s content type, for example "text/csv" or "image/png".
If NULL, the content type will be guessed based on the filename extension, or
application/octet-stream if the extension is unknown.

outputArgs A list of arguments to be passed through to the implicit call to downloadButton()
when downloadHandler is used in an interactive R Markdown document.

https://en.wikipedia.org/wiki/Internet_media_type

enableBookmarking 57

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
downloadButton("downloadData", "Download")

)

server <- function(input, output) {
Our dataset
data <- mtcars

output$downloadData <- downloadHandler(
filename = function() {

paste("data-", Sys.Date(), ".csv", sep="")
},
content = function(file) {

write.csv(data, file)
}

)
}

shinyApp(ui, server)
}

enableBookmarking Enable bookmarking for a Shiny application

Description

There are two types of bookmarking: saving an application’s state to disk on the server, and encod-
ing the application’s state in a URL. For state that has been saved to disk, the state can be restored
with the corresponding state ID. For URL-encoded state, the state of the application is encoded in
the URL, and no server-side storage is needed.

URL-encoded bookmarking is appropriate for applications where there not many input values that
need to be recorded. Some browsers have a length limit for URLs of about 2000 characters, and if
there are many inputs, the length of the URL can exceed that limit.

Saved-on-server bookmarking is appropriate when there are many inputs, or when the bookmarked
state requires storing files.

Usage

enableBookmarking(store = c("url", "server", "disable"))

Arguments

store Either "url", which encodes all of the relevant values in a URL, "server",
which saves to disk on the server, or "disable", which disables any previously-
enabled bookmarking.

58 enableBookmarking

Details

For restoring state to work properly, the UI must be a function that takes one argument, request.
In most Shiny applications, the UI is not a function; it might have the form fluidPage(....).
Converting it to a function is as simple as wrapping it in a function, as in function(request) {
fluidPage(....) }.

By default, all input values will be bookmarked, except for the values of passwordInputs. fileInputs
will be saved if the state is saved on a server, but not if the state is encoded in a URL.

When bookmarking state, arbitrary values can be stored, by passing a function as the onBookmark
argument. That function will be passed a ShinySaveState object. The values field of the object
is a list which can be manipulated to save extra information. Additionally, if the state is being saved
on the server, and the dir field of that object can be used to save extra information to files in that
directory.

For saved-to-server state, this is how the state directory is chosen:

• If running in a hosting environment such as Shiny Server or Connect, the hosting environment
will choose the directory.

• If running an app in a directory with runApp(), the saved states will be saved in a subdirectory
of the app called shiny_bookmarks.

• If running a Shiny app object that is generated from code (not run from a directory), the saved
states will be saved in a subdirectory of the current working directory called shiny_bookmarks.

When used with shinyApp(), this function must be called before shinyApp(), or in the shinyApp()’s
onStart function. An alternative to calling the enableBookmarking() function is to use the
enableBookmarking argument for shinyApp(). See examples below.

See Also

onBookmark(), onBookmarked(), onRestore(), and onRestored() for registering callback func-
tions that are invoked when the state is bookmarked or restored.

Also see updateQueryString().

Examples

Only run these examples in interactive R sessions
if (interactive()) {

Basic example with state encoded in URL
ui <- function(request) {

fluidPage(
textInput("txt", "Text"),
checkboxInput("chk", "Checkbox"),
bookmarkButton()

)
}
server <- function(input, output, session) { }
enableBookmarking("url")
shinyApp(ui, server)

enableBookmarking 59

An alternative to calling enableBookmarking(): use shinyApp's
enableBookmarking argument
shinyApp(ui, server, enableBookmarking = "url")

Same basic example with state saved to disk
enableBookmarking("server")
shinyApp(ui, server)

Save/restore arbitrary values
ui <- function(req) {

fluidPage(
textInput("txt", "Text"),
checkboxInput("chk", "Checkbox"),
bookmarkButton(),
br(),
textOutput("lastSaved")

)
}
server <- function(input, output, session) {

vals <- reactiveValues(savedTime = NULL)
output$lastSaved <- renderText({

if (!is.null(vals$savedTime))
paste("Last saved at", vals$savedTime)

else
""

})

onBookmark(function(state) {
vals$savedTime <- Sys.time()
state is a mutable reference object, and we can add arbitrary values
to it.
state$values$time <- vals$savedTime

})
onRestore(function(state) {

vals$savedTime <- state$values$time
})

}
enableBookmarking(store = "url")
shinyApp(ui, server)

Usable with dynamic UI (set the slider, then change the text input,
click the bookmark button)
ui <- function(request) {

fluidPage(
sliderInput("slider", "Slider", 1, 100, 50),
uiOutput("ui"),
bookmarkButton()

)
}
server <- function(input, output, session) {

60 enableBookmarking

output$ui <- renderUI({
textInput("txt", "Text", input$slider)

})
}
enableBookmarking("url")
shinyApp(ui, server)

Exclude specific inputs (The only input that will be saved in this
example is chk)
ui <- function(request) {

fluidPage(
passwordInput("pw", "Password"), # Passwords are never saved
sliderInput("slider", "Slider", 1, 100, 50), # Manually excluded below
checkboxInput("chk", "Checkbox"),
bookmarkButton()

)
}
server <- function(input, output, session) {

setBookmarkExclude("slider")
}
enableBookmarking("url")
shinyApp(ui, server)

Update the browser's location bar every time an input changes. This should
not be used with enableBookmarking("server"), because that would create a
new saved state on disk every time the user changes an input.
ui <- function(req) {

fluidPage(
textInput("txt", "Text"),
checkboxInput("chk", "Checkbox")

)
}
server <- function(input, output, session) {

observe({
Trigger this observer every time an input changes
reactiveValuesToList(input)
session$doBookmark()

})
onBookmarked(function(url) {

updateQueryString(url)
})

}
enableBookmarking("url")
shinyApp(ui, server)

Save/restore uploaded files
ui <- function(request) {

fluidPage(
sidebarLayout(

sidebarPanel(

exportTestValues 61

fileInput("file1", "Choose CSV File", multiple = TRUE,
accept = c(

"text/csv",
"text/comma-separated-values,text/plain",
".csv"

)
),
tags$hr(),
checkboxInput("header", "Header", TRUE),
bookmarkButton()

),
mainPanel(

tableOutput("contents")
)

)
)

}
server <- function(input, output) {

output$contents <- renderTable({
inFile <- input$file1
if (is.null(inFile))

return(NULL)

if (nrow(inFile) == 1) {
read.csv(inFile$datapath, header = input$header)

} else {
data.frame(x = "multiple files")

}
})

}
enableBookmarking("server")
shinyApp(ui, server)

}

exportTestValues Register expressions for export in test mode

Description

This function registers expressions that will be evaluated when a test export event occurs. These
events are triggered by accessing a snapshot URL.

Usage

exportTestValues(
...,
quoted_ = FALSE,
env_ = parent.frame(),
session_ = getDefaultReactiveDomain()

)

62 exportTestValues

Arguments

... Named arguments that are quoted or unquoted expressions that will be captured
and evaluated when snapshot URL is visited.

quoted_ Are the expression quoted? Default is FALSE.

env_ The environment in which the expression should be evaluated.

session_ A Shiny session object.

Details

This function only has an effect if the app is launched in test mode. This is done by calling runApp()
with test.mode=TRUE, or by setting the global option shiny.testmode to TRUE.

Examples

Only run this example in interactive R sessions
if (interactive()) {

options(shiny.testmode = TRUE)

This application shows the test snapshot URL; clicking on it will
fetch the input, output, and exported values in JSON format.
shinyApp(

ui = basicPage(
h4("Snapshot URL: "),
uiOutput("url"),
h4("Current values:"),
verbatimTextOutput("values"),
actionButton("inc", "Increment x")

),

server = function(input, output, session) {
vals <- reactiveValues(x = 1)
y <- reactive({ vals$x + 1 })

observeEvent(input$inc, {
vals$x <<- vals$x + 1

})

exportTestValues(
x = vals$x,
y = y()

)

output$url <- renderUI({
url <- session$getTestSnapshotUrl(format="json")
a(href = url, url)

})

output$values <- renderText({
paste0("vals$x: ", vals$x, "\ny: ", y())

})

ExtendedTask 63

}
)
}

ExtendedTask Task or computation that proceeds in the background

Description

In normal Shiny reactive code, whenever an observer, calc, or output is busy computing, it blocks
the current session from receiving any inputs or attempting to proceed with any other computation
related to that session.

The ExtendedTask class allows you to have an expensive operation that is started by a reactive
effect, and whose (eventual) results can be accessed by a regular observer, calc, or output; but
during the course of the operation, the current session is completely unblocked, allowing the user
to continue using the rest of the app while the operation proceeds in the background.

Note that each ExtendedTask object does not represent a single invocation of its long-running
function. Rather, it’s an object that is used to invoke the function with different arguments, keeps
track of whether an invocation is in progress, and provides ways to get at the current status or
results of the operation. A single ExtendedTask object does not permit overlapping invocations: if
the invoke() method is called before the previous invoke() is completed, the new invocation will
not begin until the previous invocation has completed.

ExtendedTask versus asynchronous reactives

Shiny has long supported using {promises} to write asynchronous observers, calcs, or outputs. You
may be wondering what the differences are between those techniques and this class.

Asynchronous observers, calcs, and outputs are not–and have never been–designed to let a user
start a long-running operation, while keeping that very same (browser) session responsive to other
interactions. Instead, they unblock other sessions, so you can take a long-running operation that
would normally bring the entire R process to a halt and limit the blocking to just the session that
started the operation. (For more details, see the section on "The Flush Cycle".)

ExtendedTask, on the other hand, invokes an asynchronous function (that is, a function that quickly
returns a promise) and allows even that very session to immediately unblock and carry on with other
user interactions.

Methods

Public methods:
• ExtendedTask$new()

• ExtendedTask$invoke()

• ExtendedTask$status()

• ExtendedTask$result()

Method new(): Creates a new ExtendedTask object. ExtendedTask should generally be created
either at the top of a server function, or at the top of a module server function.

https://rstudio.github.io/promises/articles/promises_06_shiny.html
https://rstudio.github.io/promises/articles/promises_06_shiny.html#the-flush-cycle

64 ExtendedTask

Usage:
ExtendedTask$new(func)

Arguments:

func The long-running operation to execute. This should be an asynchronous function, mean-
ing, it should use the {promises} package, most likely in conjuction with the {future} pack-
age. (In short, the return value of func should be a Future object, or a promise, or some-
thing else that promises::as.promise() understands.)
It’s also important that this logic does not read from any reactive inputs/sources, as inputs
may change after the function is invoked; instead, if the function needs to access reactive
inputs, it should take parameters and the caller of the invoke() method should read reactive
inputs and pass them as arguments.

Method invoke(): Starts executing the long-running operation. If this ExtendedTask is already
running (meaning, a previous call to invoke() is not yet complete) then enqueues this invocation
until after the current invocation, and any already-enqueued invocation, completes.

Usage:
ExtendedTask$invoke(...)

Arguments:

... Parameters to use for this invocation of the underlying function. If reactive inputs are
needed by the underlying function, they should be read by the caller of invoke and passed
in as arguments.

Method status(): This is a reactive read that invalidates the caller when the task’s status
changes.
Returns one of the following values:

• "initial": This ExtendedTask has not yet been invoked
• "running": An invocation is currently running
• "success": An invocation completed successfully, and a value can be retrieved via the
result() method

• "error": An invocation completed with an error, which will be re-thrown if you call the
result() method

Usage:
ExtendedTask$status()

Method result(): Attempts to read the results of the most recent invocation. This is a reactive
read that invalidates as the task’s status changes.
The actual behavior differs greatly depending on the current status of the task:

• "initial": Throws a silent error (like req(FALSE)). If this happens during output rendering,
the output will be blanked out.

• "running": Throws a special silent error that, if it happens during output rendering, makes
the output appear "in progress" until further notice.

• "success": Returns the return value of the most recent invocation.
• "error": Throws whatever error was thrown by the most recent invocation.

https://rstudio.github.io/promises/
https://rstudio.github.io/promises/articles/promises_04_futures.html

fileInput 65

This method is intended to be called fairly naively by any output or reactive expression that cares
about the output–you just have to be aware that if the result isn’t ready for whatever reason,
processing will stop in much the same way as req(FALSE) does, but when the result is ready
you’ll get invalidated, and when you run again the result should be there.
Note that the result() method is generally not meant to be used with observeEvent(), eventReactive(),
bindEvent(), or isolate() as the invalidation will be ignored.

Usage:
ExtendedTask$result()

fileInput File Upload Control

Description

Create a file upload control that can be used to upload one or more files.

Usage

fileInput(
inputId,
label,
multiple = FALSE,
accept = NULL,
width = NULL,
buttonLabel = "Browse...",
placeholder = "No file selected",
capture = NULL

)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

multiple Whether the user should be allowed to select and upload multiple files at once.
Does not work on older browsers, including Internet Explorer 9 and earlier.

accept A character vector of "unique file type specifiers" which gives the browser a hint
as to the type of file the server expects. Many browsers use this prevent the user
from selecting an invalid file.
A unique file type specifier can be:

• A case insensitive extension like .csv or .rds.
• A valid MIME type, like text/plain or application/pdf
• One of audio/*, video/*, or image/* meaning any audio, video, or image

type, respectively.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

66 fileInput

buttonLabel The label used on the button. Can be text or an HTML tag object.

placeholder The text to show before a file has been uploaded.

capture What source to use for capturing image, audio or video data. This attribute
facilitates user access to a device’s media capture mechanism, such as a camera,
or microphone, from within a file upload control.
A value of user indicates that the user-facing camera and/or microphone should
be used. A value of environment specifies that the outward-facing camera
and/or microphone should be used.
By default on most phones, this will accept still photos or video. For still photos
only, also use accept="image/*". For video only, use accept="video/*".

Details

Whenever a file upload completes, the corresponding input variable is set to a dataframe. See the
Server value section.

Each time files are uploaded, they are written to a new random subdirectory inside of R’s process-
level temporary directory. The Shiny user session keeps track of all uploads in the session, and
when the session ends, Shiny deletes all of the subdirectories where files where uploaded to.

Server value

A data.frame that contains one row for each selected file, and following columns:

name The filename provided by the web browser. This is not the path to read to get at the actual
data that was uploaded (see datapath column).

size The size of the uploaded data, in bytes.

type The MIME type reported by the browser (for example, text/plain), or empty string if the
browser didn’t know.

datapath The path to a temp file that contains the data that was uploaded. This file may be deleted
if the user performs another upload operation.

See Also

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sidebarLayout(
sidebarPanel(

fileInput("file1", "Choose CSV File", accept = ".csv"),
checkboxInput("header", "Header", TRUE)

),

fillPage 67

mainPanel(
tableOutput("contents")

)
)

)

server <- function(input, output) {
output$contents <- renderTable({

file <- input$file1
ext <- tools::file_ext(file$datapath)

req(file)
validate(need(ext == "csv", "Please upload a csv file"))

read.csv(file$datapath, header = input$header)
})

}

shinyApp(ui, server)
}

fillPage Create a page that fills the window

Description

fillPage creates a page whose height and width always fill the available area of the browser win-
dow.

Usage

fillPage(
...,
padding = 0,
title = NULL,
bootstrap = TRUE,
theme = NULL,
lang = NULL

)

Arguments

... Elements to include within the page.

padding Padding to use for the body. This can be a numeric vector (which will be inter-
preted as pixels) or a character vector with valid CSS lengths. The length can
be between one and four. If one, then that value will be used for all four sides.
If two, then the first value will be used for the top and bottom, while the second

68 fillPage

value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

title The title to use for the browser window/tab (it will not be shown in the docu-
ment).

bootstrap If TRUE, load the Bootstrap CSS library.

theme One of the following:

• NULL (the default), which implies a "stock" build of Bootstrap 3.
• A bslib::bs_theme() object. This can be used to replace a stock build of

Bootstrap 3 with a customized version of Bootstrap 3 or higher.
• A character string pointing to an alternative Bootstrap stylesheet (normally

a css file within the www directory, e.g. www/bootstrap.css).

lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

Details

The fluidPage() and fixedPage() functions are used for creating web pages that are laid out
from the top down, leaving whitespace at the bottom if the page content’s height is smaller than the
browser window, and scrolling if the content is larger than the window.

fillPage is designed to latch the document body’s size to the size of the window. This makes it
possible to fill it with content that also scales to the size of the window.

For example, fluidPage(plotOutput("plot", height = "100%")) will not work as expected;
the plot element’s effective height will be 0, because the plot’s containing elements (<div> and
<body>) have automatic height; that is, they determine their own height based on the height of their
contained elements. However, fillPage(plotOutput("plot", height = "100%")) will work be-
cause fillPage fixes the <body> height at 100% of the window height.

Note that fillPage(plotOutput("plot")) will not cause the plot to fill the page. Like most Shiny
output widgets, plotOutput’s default height is a fixed number of pixels. You must explicitly set
height = "100%" if you want a plot (or htmlwidget, say) to fill its container.

One must be careful what layouts/panels/elements come between the fillPage and the plots/widgets.
Any container that has an automatic height will cause children with height = "100%" to misbehave.
Stick to functions that are designed for fill layouts, such as the ones in this package.

See Also

Other layout functions: fixedPage(), flowLayout(), fluidPage(), navbarPage(), sidebarLayout(),
splitLayout(), verticalLayout()

Examples

fillPage(
tags$style(type = "text/css",

".half-fill { width: 50%; height: 100%; }",
"#one { float: left; background-color: #ddddff; }",

fillRow 69

"#two { float: right; background-color: #ccffcc; }"
),
div(id = "one", class = "half-fill",

"Left half"
),
div(id = "two", class = "half-fill",

"Right half"
),
padding = 10

)

fillPage(
fillRow(

div(style = "background-color: red; width: 100%; height: 100%;"),
div(style = "background-color: blue; width: 100%; height: 100%;")

)
)

fillRow Flex Box-based row/column layouts

Description

Creates row and column layouts with proportionally-sized cells, using the Flex Box layout model
of CSS3. These can be nested to create arbitrary proportional-grid layouts. Warning: Flex Box
is not well supported by Internet Explorer, so these functions should only be used where modern
browsers can be assumed.

Usage

fillRow(..., flex = 1, width = "100%", height = "100%")

fillCol(..., flex = 1, width = "100%", height = "100%")

Arguments

... UI objects to put in each row/column cell; each argument will occupy a single
cell. (To put multiple items in a single cell, you can use tagList() or div() to
combine them.) Named arguments will be used as attributes on the div element
that encapsulates the row/column.

flex Determines how space should be distributed to the cells. Can be a single value
like 1 or 2 to evenly distribute the available space; or use a vector of numbers to
specify the proportions. For example, flex = c(2, 3) would cause the space to
be split 40%/60% between two cells. NA values will cause the corresponding
cell to be sized according to its contents (without growing or shrinking).

width, height The total amount of width and height to use for the entire row/column. For the
default height of "100%" to be effective, the parent must be fillPage, another
fillRow/fillCol, or some other HTML element whose height is not deter-
mined by the height of its contents.

70 fixedPage

Details

If you try to use fillRow and fillCol inside of other Shiny containers, such as sidebarLayout(),
navbarPage(), or even tags$div, you will probably find that they will not appear. This is due to
fillRow and fillCol defaulting to height="100%", which will only work inside of containers that
have determined their own size (rather than shrinking to the size of their contents, as is usually the
case in HTML).

To avoid this problem, you have two options:

• only use fillRow/fillCol inside of fillPage, fillRow, or fillCol
• provide an explicit height argument to fillRow/fillCol

Examples

Only run this example in interactive R sessions.
if (interactive()) {

ui <- fillPage(fillRow(
plotOutput("plotLeft", height = "100%"),
fillCol(
plotOutput("plotTopRight", height = "100%"),
plotOutput("plotBottomRight", height = "100%")

)
))

server <- function(input, output, session) {
output$plotLeft <- renderPlot(plot(cars))
output$plotTopRight <- renderPlot(plot(pressure))
output$plotBottomRight <- renderPlot(plot(AirPassengers))

}

shinyApp(ui, server)

}

fixedPage Create a page with a fixed layout

Description

Functions for creating fixed page layouts. A fixed page layout consists of rows which in turn include
columns. Rows exist for the purpose of making sure their elements appear on the same line (if the
browser has adequate width). Columns exist for the purpose of defining how much horizontal space
within a 12-unit wide grid it’s elements should occupy. Fixed pages limit their width to 940 pixels
on a typical display, and 724px or 1170px on smaller and larger displays respectively.

Usage

fixedPage(..., title = NULL, theme = NULL, lang = NULL)

fixedRow(...)

fixedPage 71

Arguments

... Elements to include within the container

title The browser window title (defaults to the host URL of the page)

theme One of the following:

• NULL (the default), which implies a "stock" build of Bootstrap 3.
• A bslib::bs_theme() object. This can be used to replace a stock build of

Bootstrap 3 with a customized version of Bootstrap 3 or higher.
• A character string pointing to an alternative Bootstrap stylesheet (normally

a css file within the www directory, e.g. www/bootstrap.css).

lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

Details

To create a fixed page use the fixedPage function and include instances of fixedRow and column()
within it. Note that unlike fluidPage(), fixed pages cannot make use of higher-level layout func-
tions like sidebarLayout, rather, all layout must be done with fixedRow and column.

Value

A UI definition that can be passed to the shinyUI function.

Note

See the Shiny Application Layout Guide for additional details on laying out fixed pages.

See Also

column()

Other layout functions: fillPage(), flowLayout(), fluidPage(), navbarPage(), sidebarLayout(),
splitLayout(), verticalLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fixedPage(
title = "Hello, Shiny!",
fixedRow(
column(width = 4,

"4"
),
column(width = 3, offset = 2,

"3 offset 2"
)

)

https://shiny.rstudio.com/articles/layout-guide.html

72 flowLayout

)

shinyApp(ui, server = function(input, output) { })
}

flowLayout Flow layout

Description

Lays out elements in a left-to-right, top-to-bottom arrangement. The elements on a given row will
be top-aligned with each other. This layout will not work well with elements that have a percentage-
based width (e.g. plotOutput() at its default setting of width = "100%").

Usage

flowLayout(..., cellArgs = list())

Arguments

... Unnamed arguments will become child elements of the layout. Named argu-
ments will become HTML attributes on the outermost tag.

cellArgs Any additional attributes that should be used for each cell of the layout.

See Also

Other layout functions: fillPage(), fixedPage(), fluidPage(), navbarPage(), sidebarLayout(),
splitLayout(), verticalLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- flowLayout(
numericInput("rows", "How many rows?", 5),
selectInput("letter", "Which letter?", LETTERS),
sliderInput("value", "What value?", 0, 100, 50)

)
shinyApp(ui, server = function(input, output) { })
}

fluidPage 73

fluidPage Create a page with fluid layout

Description

Functions for creating fluid page layouts. A fluid page layout consists of rows which in turn include
columns. Rows exist for the purpose of making sure their elements appear on the same line (if
the browser has adequate width). Columns exist for the purpose of defining how much horizontal
space within a 12-unit wide grid it’s elements should occupy. Fluid pages scale their components
in realtime to fill all available browser width.

Usage

fluidPage(..., title = NULL, theme = NULL, lang = NULL)

fluidRow(...)

Arguments

... Elements to include within the page

title The browser window title (defaults to the host URL of the page). Can also be
set as a side effect of the titlePanel() function.

theme One of the following:

• NULL (the default), which implies a "stock" build of Bootstrap 3.
• A bslib::bs_theme() object. This can be used to replace a stock build of

Bootstrap 3 with a customized version of Bootstrap 3 or higher.
• A character string pointing to an alternative Bootstrap stylesheet (normally

a css file within the www directory, e.g. www/bootstrap.css).

lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

Details

To create a fluid page use the fluidPage function and include instances of fluidRow and column()
within it. As an alternative to low-level row and column functions you can also use higher-level
layout functions like sidebarLayout().

Value

A UI definition that can be passed to the shinyUI function.

Note

See the Shiny-Application-Layout-Guide for additional details on laying out fluid pages.

https://shiny.rstudio.com/articles/layout-guide.html

74 fluidPage

See Also

column()

Other layout functions: fillPage(), fixedPage(), flowLayout(), navbarPage(), sidebarLayout(),
splitLayout(), verticalLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {

Example of UI with fluidPage
ui <- fluidPage(

Application title
titlePanel("Hello Shiny!"),

sidebarLayout(

Sidebar with a slider input
sidebarPanel(

sliderInput("obs",
"Number of observations:",
min = 0,
max = 1000,
value = 500)

),

Show a plot of the generated distribution
mainPanel(

plotOutput("distPlot")
)

)
)

Server logic
server <- function(input, output) {

output$distPlot <- renderPlot({
hist(rnorm(input$obs))

})
}

Complete app with UI and server components
shinyApp(ui, server)

UI demonstrating column layouts
ui <- fluidPage(

title = "Hello Shiny!",
fluidRow(

column(width = 4,
"4"

),

freezeReactiveVal 75

column(width = 3, offset = 2,
"3 offset 2"

)
)

)

shinyApp(ui, server = function(input, output) { })
}

freezeReactiveVal Freeze a reactive value

Description

These functions freeze a reactiveVal(), or an element of a reactiveValues(). If the value
is accessed while frozen, a "silent" exception is raised and the operation is stopped. This is the
same thing that happens if req(FALSE) is called. The value is thawed (un-frozen; accessing it
will no longer raise an exception) when the current reactive domain is flushed. In a Shiny appli-
cation, this occurs after all of the observers are executed. NOTE: We are considering deprecating
freezeReactiveVal, and freezeReactiveValue except when x is input. If this affects your app,
please let us know by leaving a comment on this GitHub issue.

Usage

freezeReactiveVal(x)

freezeReactiveValue(x, name)

Arguments

x For freezeReactiveValue, a reactiveValues() object (like input); for freezeReactiveVal,
a reactiveVal() object.

name The name of a value in the reactiveValues() object.

See Also

req()

Examples

Only run this examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
selectInput("data", "Data Set", c("mtcars", "pressure")),
checkboxGroupInput("cols", "Columns (select 2)", character(0)),
plotOutput("plot")

)

https://github.com/rstudio/shiny/issues/3063

76 getCurrentOutputInfo

server <- function(input, output, session) {
observe({
data <- get(input$data)
Sets a flag on input$cols to essentially do req(FALSE) if input$cols
is accessed. Without this, an error will momentarily show whenever a
new data set is selected.
freezeReactiveValue(input, "cols")
updateCheckboxGroupInput(session, "cols", choices = names(data))

})

output$plot <- renderPlot({
When a new data set is selected, input$cols will have been invalidated
above, and this will essentially do the same as req(FALSE), causing
this observer to stop and raise a silent exception.
cols <- input$cols
data <- get(input$data)

if (length(cols) == 2) {
plot(data[[cols[1]]], data[[cols[2]]])

}
})

}

shinyApp(ui, server)
}

getCurrentOutputInfo Get output information

Description

Returns information about the currently executing output, including its name (i.e., outputId); and
in some cases, relevant sizing and styling information.

Usage

getCurrentOutputInfo(session = getDefaultReactiveDomain())

Arguments

session The current Shiny session.

Value

NULL if called outside of an output context; otherwise, a list which includes:

• The name of the output (reported for any output).

• If the output is a plotOutput() or imageOutput(), then:

– height: a reactive expression which returns the height in pixels.

getCurrentOutputInfo 77

– width: a reactive expression which returns the width in pixels.

• If the output is a plotOutput(), imageOutput(), or contains a shiny-report-theme class,
then:

– bg: a reactive expression which returns the background color.
– fg: a reactive expression which returns the foreground color.
– accent: a reactive expression which returns the hyperlink color.
– font: a reactive expression which returns a list of font information, including:

* families: a character vector containing the CSS font-family property.

* size: a character string containing the CSS font-size property

Examples

if (interactive()) {
shinyApp(
fluidPage(

tags$style(HTML("body {background-color: black; color: white; }")),
tags$style(HTML("body a {color: purple}")),
tags$style(HTML("#info {background-color: teal; color: orange; }")),
plotOutput("p"),
"Computed CSS styles for the output named info:",
tagAppendAttributes(

textOutput("info"),
class = "shiny-report-theme"

)
),
function(input, output) {

output$p <- renderPlot({
info <- getCurrentOutputInfo()
par(bg = info$bg(), fg = info$fg(), col.axis = info$fg(), col.main = info$fg())
plot(1:10, col = info$accent(), pch = 19)
title("A simple R plot that uses its CSS styling")

})
output$info <- renderText({

info <- getCurrentOutputInfo()
jsonlite::toJSON(

list(
bg = info$bg(),
fg = info$fg(),
accent = info$accent(),
font = info$font()

),
auto_unbox = TRUE

)
})

}
)

}

78 getQueryString

getQueryString Get the query string / hash component from the URL

Description

Two user friendly wrappers for getting the query string and the hash component from the app’s
URL.

Usage

getQueryString(session = getDefaultReactiveDomain())

getUrlHash(session = getDefaultReactiveDomain())

Arguments

session A Shiny session object.

Details

These can be particularly useful if you want to display different content depending on the values in
the query string / hash (e.g. instead of basing the conditional on an input or a calculated reactive, you
can base it on the query string). However, note that, if you’re changing the query string / hash pro-
grammatically from within the server code, you must use updateQueryString(_yourNewQueryString_, mode = "push").
The default mode for updateQueryString is "replace", which doesn’t raise any events, so any ob-
servers or reactives that depend on it will not get triggered. However, if you’re changing the query
string / hash directly by typing directly in the browser and hitting enter, you don’t have to worry
about this.

Value

For getQueryString, a named list. For example, the query string ?param1=value1¶m2=value2
becomes list(param1 = value1, param2 = value2). For getUrlHash, a character vector with the
hash (including the leading # symbol).

See Also

updateQueryString()

Examples

Only run this example in interactive R sessions
if (interactive()) {

App 1: getQueryString
Printing the value of the query string
(Use the back and forward buttons to see how the browser
keeps a record of each state)

getShinyOption 79

shinyApp(
ui = fluidPage(

textInput("txt", "Enter new query string"),
helpText("Format: ?param1=val1¶m2=val2"),
actionButton("go", "Update"),
hr(),
verbatimTextOutput("query")

),
server = function(input, output, session) {

observeEvent(input$go, {
updateQueryString(input$txt, mode = "push")

})
output$query <- renderText({

query <- getQueryString()
queryText <- paste(names(query), query,

sep = "=", collapse=", ")
paste("Your query string is:\n", queryText)

})
}

)

App 2: getUrlHash
Printing the value of the URL hash
(Use the back and forward buttons to see how the browser
keeps a record of each state)
shinyApp(

ui = fluidPage(
textInput("txt", "Enter new hash"),
helpText("Format: #hash"),
actionButton("go", "Update"),
hr(),
verbatimTextOutput("hash")

),
server = function(input, output, session) {

observeEvent(input$go, {
updateQueryString(input$txt, mode = "push")

})
output$hash <- renderText({

hash <- getUrlHash()
paste("Your hash is:\n", hash)

})
}

)
}

getShinyOption Get or set Shiny options

80 getShinyOption

Description

There are two mechanisms for working with options for Shiny. One is the options() function,
which is part of base R, and the other is the shinyOptions() function, which is in the Shiny
package. The reason for these two mechanisms is has to do with legacy code and scoping.

The options() function sets options globally, for the duration of the R process. The getOption()
function retrieves the value of an option. All shiny related options of this type are prefixed with
"shiny.".

The shinyOptions() function sets the value of a shiny option, but unlike options(), it is not
always global in scope; the options may be scoped globally, to an application, or to a user session
in an application, depending on the context. The getShinyOption() function retrieves a value of a
shiny option. Currently, the options set via shinyOptions are for internal use only.

Usage

getShinyOption(name, default = NULL)

shinyOptions(...)

Arguments

name Name of an option to get.

default Value to be returned if the option is not currently set.

... Options to set, with the form name = value.

Options with options()

shiny.autoreload (defaults to FALSE) If TRUE when a Shiny app is launched, the app directory will
be continually monitored for changes to files that have the extensions: r, htm, html, js, css,
png, jpg, jpeg, gif. If any changes are detected, all connected Shiny sessions are reloaded.
This allows for fast feedback loops when tweaking Shiny UI.
Since monitoring for changes is expensive (we simply poll for last modified times), this feature
is intended only for development.
You can customize the file patterns Shiny will monitor by setting the shiny.autoreload.pattern
option. For example, to monitor only ui.R: options(shiny.autoreload.pattern = glob2rx("ui.R"))

The default polling interval is 500 milliseconds. You can change this by setting e.g. options(shiny.autoreload.interval
= 2000) (every two seconds).

shiny.deprecation.messages (defaults to TRUE) This controls whether messages for deprecated func-
tions in Shiny will be printed. See shinyDeprecated() for more information.

shiny.error (defaults to NULL) This can be a function which is called when an error occurs. For
example, options(shiny.error=recover) will result a the debugger prompt when an error
occurs.

shiny.fullstacktrace (defaults to FALSE) Controls whether "pretty" (FALSE) or full stack traces
(TRUE) are dumped to the console when errors occur during Shiny app execution. Pretty stack
traces attempt to only show user-supplied code, but this pruning can’t always be done 100%
correctly.

getShinyOption 81

shiny.host (defaults to "127.0.0.1") The IP address that Shiny should listen on. See runApp()
for more information.

shiny.jquery.version (defaults to 3) The major version of jQuery to use. Currently only values of
3 or 1 are supported. If 1, then jQuery 1.12.4 is used. If 3, then jQuery 3.6.0 is used.

shiny.json.digits (defaults to I(16)) Max number of digits to use when converting numbers to
JSON format to send to the client web browser. Use I() to specify significant digits. Use NA
for max precision.

shiny.launch.browser (defaults to interactive()) A boolean which controls the default behav-
ior when an app is run. See runApp() for more information.

shiny.mathjax.url (defaults to "https://mathjax.rstudio.com/latest/MathJax.js") The URL
that should be used to load MathJax, via withMathJax().

shiny.mathjax.config (defaults to "config=TeX-AMS-MML_HTMLorMML") The querystring used to
load MathJax, via withMathJax().

shiny.maxRequestSize (defaults to 5MB) This is a number which specifies the maximum web
request size, which serves as a size limit for file uploads.

shiny.minified (defaults to TRUE) By default Whether or not to include Shiny’s JavaScript as a
minified (shiny.min.js) or un-minified (shiny.js) file. The un-minified version is larger,
but can be helpful for development and debugging.

shiny.port (defaults to a random open port) A port number that Shiny will listen on. See runApp()
for more information.

shiny.reactlog (defaults to FALSE) If TRUE, enable logging of reactive events, which can be viewed
later with the reactlogShow() function. This incurs a substantial performance penalty and
should not be used in production.

shiny.sanitize.errors (defaults to FALSE) If TRUE, then normal errors (i.e. errors not wrapped in
safeError) won’t show up in the app; a simple generic error message is printed instead (the
error and stack trace printed to the console remain unchanged). If you want to sanitize errors
in general, but you DO want a particular error e to get displayed to the user, then set this option
to TRUE and use stop(safeError(e)) for errors you want the user to see.

shiny.stacktraceoffset (defaults to TRUE) If TRUE, then Shiny’s printed stack traces will display
srcrefs one line above their usual location. This is an arguably more intuitive arrangement for
casual R users, as the name of a function appears next to the srcref where it is defined, rather
than where it is currently being called from.

shiny.suppressMissingContextError (defaults to FALSE) Normally, invoking a reactive outside
of a reactive context (or isolate()) results in an error. If this is TRUE, don’t error in these
cases. This should only be used for debugging or demonstrations of reactivity at the console.

shiny.testmode (defaults to FALSE) If TRUE, then various features for testing Shiny applications
are enabled.

shiny.snapshotsortc (defaults to FALSE) If TRUE, test snapshot keys for shinytest will be sorted
consistently using the C locale. Snapshots retrieved by shinytest2 will always sort using the
C locale.

shiny.trace (defaults to FALSE) Print messages sent between the R server and the web browser
client to the R console. This is useful for debugging. Possible values are "send" (only print
messages sent to the client), "recv" (only print messages received by the server), TRUE (print
all messages), or FALSE (default; don’t print any of these messages).

82 helpText

shiny.autoload.r (defaults to TRUE) If TRUE, then the R/ of a shiny app will automatically be sourced.

shiny.useragg (defaults to TRUE) Set to FALSE to prevent PNG rendering via the ragg package.
See plotPNG() for more information.

shiny.usecairo (defaults to TRUE) Set to FALSE to prevent PNG rendering via the Cairo package.
See plotPNG() for more information.

shiny.devmode (defaults to NULL) Option to enable Shiny Developer Mode. When set, different
default getOption(key) values will be returned. See devmode() for more details.

Scoping for shinyOptions()

There are three levels of scoping for shinyOptions(): global, application, and session.

The global option set is available by default. Any calls to shinyOptions() and getShinyOption()
outside of an app will access the global option set.

When a Shiny application is run with runApp(), the global option set is duplicated and the new
option set is available at the application level. If options are set from global.R, app.R, ui.R, or
server.R (but outside of the server function), then the application-level options will be modified.

Each time a user session is started, the application-level option set is duplicated, for that session. If
the options are set from inside the server function, then they will be scoped to the session.

Options with shinyOptions()

There are a number of global options that affect Shiny’s behavior. These can be set globally with
options() or locally (for a single app) with shinyOptions().

cache A caching object that will be used by renderCachedPlot(). If not specified, a cachem::cache_mem()
will be used.

helpText Create a help text element

Description

Create help text which can be added to an input form to provide additional explanation or context.

Usage

helpText(...)

Arguments

... One or more help text strings (or other inline HTML elements)

Value

A help text element that can be added to a UI definition.

htmlOutput 83

Examples

helpText("Note: while the data view will show only",
"the specified number of observations, the",
"summary will be based on the full dataset.")

htmlOutput Create an HTML output element

Description

Render a reactive output variable as HTML within an application page. The text will be included
within an HTML div tag, and is presumed to contain HTML content which should not be escaped.

Usage

htmlOutput(
outputId,
inline = FALSE,
container = if (inline) span else div,
fill = FALSE,
...

)

uiOutput(
outputId,
inline = FALSE,
container = if (inline) span else div,
fill = FALSE,
...

)

Arguments

outputId output variable to read the value from

inline use an inline (span()) or block container (div()) for the output

container a function to generate an HTML element to contain the text

fill If TRUE, the result of container is treated as both a fill item and container (see
htmltools::bindFillRole()), which means both the container as well as its
immediate children (i.e., the result of renderUI()) are allowed to grow/shrink
to fit a fill container with an opinionated height. Set fill = "item" or fill =
"container" to treat container as just a fill item or a fill container.

... Other arguments to pass to the container tag function. This is useful for provid-
ing additional classes for the tag.

84 icon

Details

uiOutput is intended to be used with renderUI on the server side. It is currently just an alias for
htmlOutput.

Value

An HTML output element that can be included in a panel

Examples

htmlOutput("summary")

Using a custom container and class
tags$ul(

htmlOutput("summary", container = tags$li, class = "custom-li-output")
)

icon Create an icon

Description

Create an icon for use within a page. Icons can appear on their own, inside of a button, and/or used
with tabPanel() and navbarMenu().

Usage

icon(name, class = NULL, lib = "font-awesome", ...)

Arguments

name The name of the icon. A name from either Font Awesome (when lib="font-awesome")
or Bootstrap Glyphicons (when lib="glyphicon") may be provided. Note
that the "fa-" and "glyphicon-" prefixes should not appear in name (i.e., the
"fa-calendar" icon should be referred to as "calendar"). A name of NULL
may also be provided to get a raw <i> tag with no library attached to it.

class Additional classes to customize the style of an icon (see the usage examples for
details on supported styles).

lib The icon library to use. Either "font-awesome" or "glyphicon".

... Arguments passed to the <i> tag of htmltools::tags.

Value

An <i> (icon) HTML tag.

https://fontawesome.com/
https://getbootstrap.com/docs/3.3/components/#glyphicons
https://fontawesome.com/how-to-use

inputPanel 85

See Also

For lists of available icons, see https://fontawesome.com/icons and https://getbootstrap.
com/docs/3.3/components/#glyphicons

Examples

add an icon to a submit button
submitButton("Update View", icon = icon("redo"))

navbarPage("App Title",
tabPanel("Plot", icon = icon("bar-chart-o")),
tabPanel("Summary", icon = icon("list-alt")),
tabPanel("Table", icon = icon("table"))

)

inputPanel Input panel

Description

A flowLayout() with a grey border and light grey background, suitable for wrapping inputs.

Usage

inputPanel(...)

Arguments

... Input controls or other HTML elements.

insertTab Dynamically insert/remove a tabPanel

Description

Dynamically insert or remove a tabPanel() (or a navbarMenu()) from an existing tabsetPanel(),
navlistPanel() or navbarPage().

https://fontawesome.com/icons
https://getbootstrap.com/docs/3.3/components/#glyphicons
https://getbootstrap.com/docs/3.3/components/#glyphicons

86 insertTab

Usage

insertTab(
inputId,
tab,
target = NULL,
position = c("after", "before"),
select = FALSE,
session = getDefaultReactiveDomain()

)

prependTab(
inputId,
tab,
select = FALSE,
menuName = NULL,
session = getDefaultReactiveDomain()

)

appendTab(
inputId,
tab,
select = FALSE,
menuName = NULL,
session = getDefaultReactiveDomain()

)

removeTab(inputId, target, session = getDefaultReactiveDomain())

Arguments

inputId The id of the tabsetPanel (or navlistPanel or navbarPage) into which tab
will be inserted/removed.

tab The item to be added (must be created with tabPanel, or with navbarMenu).

target If inserting: the value of an existing tabPanel, next to which tab will be added.
If removing: the value of the tabPanel that you want to remove. See Details if
you want to insert next to/remove an entire navbarMenu instead.

position Should tab be added before or after the target tab?

select Should tab be selected upon being inserted?

session The shiny session within which to call this function.

menuName This argument should only be used when you want to prepend (or append) tab to
the beginning (or end) of an existing navbarMenu() (which must itself be part of
an existing navbarPage()). In this case, this argument should be the menuName
that you gave your navbarMenu when you first created it (by default, this is equal
to the value of the title argument). Note that you still need to set the inputId
argument to whatever the id of the parent navbarPage is. If menuName is left as
NULL, tab will be prepended (or appended) to whatever inputId is.

insertTab 87

Details

When you want to insert a new tab before or after an existing tab, you should use insertTab. When
you want to prepend a tab (i.e. add a tab to the beginning of the tabsetPanel), use prependTab.
When you want to append a tab (i.e. add a tab to the end of the tabsetPanel), use appendTab.

For navbarPage, you can insert/remove conventional tabPanels (whether at the top level or nested
inside a navbarMenu), as well as an entire navbarMenu(). For the latter case, target should be the
menuName that you gave your navbarMenu when you first created it (by default, this is equal to the
value of the title argument).

See Also

showTab()

Examples

Only run this example in interactive R sessions
if (interactive()) {

example app for inserting/removing a tab
ui <- fluidPage(

sidebarLayout(
sidebarPanel(

actionButton("add", "Add 'Dynamic' tab"),
actionButton("remove", "Remove 'Foo' tab")

),
mainPanel(

tabsetPanel(id = "tabs",
tabPanel("Hello", "This is the hello tab"),
tabPanel("Foo", "This is the foo tab"),
tabPanel("Bar", "This is the bar tab")

)
)

)
)
server <- function(input, output, session) {

observeEvent(input$add, {
insertTab(inputId = "tabs",

tabPanel("Dynamic", "This a dynamically-added tab"),
target = "Bar"

)
})
observeEvent(input$remove, {

removeTab(inputId = "tabs", target = "Foo")
})

}

shinyApp(ui, server)

example app for prepending/appending a navbarMenu
ui <- navbarPage("Navbar page", id = "tabs",

88 insertUI

tabPanel("Home",
actionButton("prepend", "Prepend a navbarMenu"),
actionButton("append", "Append a navbarMenu")

)
)
server <- function(input, output, session) {

observeEvent(input$prepend, {
id <- paste0("Dropdown", input$prepend, "p")
prependTab(inputId = "tabs",

navbarMenu(id,
tabPanel("Drop1", paste("Drop1 page from", id)),
tabPanel("Drop2", paste("Drop2 page from", id)),
"------",
"Header",
tabPanel("Drop3", paste("Drop3 page from", id))

)
)

})
observeEvent(input$append, {

id <- paste0("Dropdown", input$append, "a")
appendTab(inputId = "tabs",

navbarMenu(id,
tabPanel("Drop1", paste("Drop1 page from", id)),
tabPanel("Drop2", paste("Drop2 page from", id)),
"------",
"Header",
tabPanel("Drop3", paste("Drop3 page from", id))

)
)

})
}

shinyApp(ui, server)

}

insertUI Insert and remove UI objects

Description

These functions allow you to dynamically add and remove arbitrary UI into your app, whenever
you want, as many times as you want. Unlike renderUI(), the UI generated with insertUI()
is persistent: once it’s created, it stays there until removed by removeUI(). Each new call to
insertUI() creates more UI objects, in addition to the ones already there (all independent from
one another). To update a part of the UI (ex: an input object), you must use the appropriate render
function or a customized reactive function.

insertUI 89

Usage

insertUI(
selector,
where = c("beforeBegin", "afterBegin", "beforeEnd", "afterEnd"),
ui,
multiple = FALSE,
immediate = FALSE,
session = getDefaultReactiveDomain()

)

removeUI(
selector,
multiple = FALSE,
immediate = FALSE,
session = getDefaultReactiveDomain()

)

Arguments

selector A string that is accepted by jQuery’s selector (i.e. the string s to be placed in a
$(s) jQuery call).
For insertUI() this determines the element(s) relative to which you want to
insert your UI object. For removeUI() this determine the element(s) to be re-
moved. If you want to remove a Shiny input or output, note that many of these
are wrapped in <div>s, so you may need to use a somewhat complex selector —
see the Examples below. (Alternatively, you could also wrap the inputs/outputs
that you want to be able to remove easily in a <div> with an id.)

where Where your UI object should go relative to the selector:

beforeBegin Before the selector element itself
afterBegin Just inside the selector element, before its first child
beforeEnd Just inside the selector element, after its last child (default)
afterEnd After the selector element itself

Adapted from https://developer.mozilla.org/en-US/docs/Web/API/Element/
insertAdjacentHTML.

ui The UI object you want to insert. This can be anything that you usually put
inside your apps’s ui function. If you’re inserting multiple elements in one
call, make sure to wrap them in either a tagList() or a tags$div() (the latter
option has the advantage that you can give it an id to make it easier to reference
or remove it later on). If you want to insert raw html, use ui = HTML().

multiple In case your selector matches more than one element, multiple determines
whether Shiny should insert the UI object relative to all matched elements or
just relative to the first matched element (default).

immediate Whether the UI object should be immediately inserted or removed, or whether
Shiny should wait until all outputs have been updated and all observers have
been run (default).

session The shiny session. Advanced use only.

https://developer.mozilla.org/en-US/docs/Web/API/Element/insertAdjacentHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/insertAdjacentHTML

90 insertUI

Details

It’s particularly useful to pair removeUI with insertUI(), but there is no restriction on what you
can use it on. Any element that can be selected through a jQuery selector can be removed through
this function.

Examples

Only run this example in interactive R sessions
if (interactive()) {
Define UI
ui <- fluidPage(

actionButton("add", "Add UI")
)

Server logic
server <- function(input, output, session) {

observeEvent(input$add, {
insertUI(

selector = "#add",
where = "afterEnd",
ui = textInput(paste0("txt", input$add),

"Insert some text")
)

})
}

Complete app with UI and server components
shinyApp(ui, server)
}

if (interactive()) {
Define UI
ui <- fluidPage(

actionButton("rmv", "Remove UI"),
textInput("txt", "This is no longer useful")

)

Server logic
server <- function(input, output, session) {

observeEvent(input$rmv, {
removeUI(

selector = "div:has(> #txt)"
)

})
}

Complete app with UI and server components
shinyApp(ui, server)
}

invalidateLater 91

invalidateLater Scheduled Invalidation

Description

Schedules the current reactive context to be invalidated in the given number of milliseconds.

Usage

invalidateLater(millis, session = getDefaultReactiveDomain())

Arguments

millis Approximate milliseconds to wait before invalidating the current reactive con-
text.

session A session object. This is needed to cancel any scheduled invalidations after a
user has ended the session. If NULL, then this invalidation will not be tied to any
session, and so it will still occur.

Details

If this is placed within an observer or reactive expression, that object will be invalidated (and re-
execute) after the interval has passed. The re-execution will reset the invalidation flag, so in a typical
use case, the object will keep re-executing and waiting for the specified interval. It’s possible to stop
this cycle by adding conditional logic that prevents the invalidateLater from being run.

See Also

reactiveTimer() is a slightly less safe alternative.

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("n", "Number of observations", 2, 1000, 500),
plotOutput("plot")

)

server <- function(input, output, session) {

observe({
Re-execute this reactive expression after 1000 milliseconds
invalidateLater(1000, session)

Do something each time this is invalidated.
The isolate() makes this observer _not_ get invalidated and re-executed
when input$n changes.

92 isolate

print(paste("The value of input$n is", isolate(input$n)))
})

Generate a new histogram at timed intervals, but not when
input$n changes.
output$plot <- renderPlot({

Re-execute this reactive expression after 2000 milliseconds
invalidateLater(2000)
hist(rnorm(isolate(input$n)))

})
}

shinyApp(ui, server)
}

is.reactivevalues Checks whether an object is a reactivevalues object

Description

Checks whether its argument is a reactivevalues object.

Usage

is.reactivevalues(x)

Arguments

x The object to test.

See Also

reactiveValues().

isolate Create a non-reactive scope for an expression

Description

Executes the given expression in a scope where reactive values or expression can be read, but they
cannot cause the reactive scope of the caller to be re-evaluated when they change.

Usage

isolate(expr)

isolate 93

Arguments

expr An expression that can access reactive values or expressions.

Details

Ordinarily, the simple act of reading a reactive value causes a relationship to be established between
the caller and the reactive value, where a change to the reactive value will cause the caller to re-
execute. (The same applies for the act of getting a reactive expression’s value.) The isolate
function lets you read a reactive value or expression without establishing this relationship.

The expression given to isolate() is evaluated in the calling environment. This means that if you
assign a variable inside the isolate(), its value will be visible outside of the isolate(). If you
want to avoid this, you can use base::local() inside the isolate().

This function can also be useful for calling reactive expression at the console, which can be useful
for debugging. To do so, simply wrap the calls to the reactive expression with isolate().

Examples

Not run:
observe({

input$saveButton # Do take a dependency on input$saveButton

isolate a simple expression
data <- get(isolate(input$dataset)) # No dependency on input$dataset
writeToDatabase(data)

})

observe({
input$saveButton # Do take a dependency on input$saveButton

isolate a whole block
data <- isolate({
a <- input$valueA # No dependency on input$valueA or input$valueB
b <- input$valueB
c(a=a, b=b)

})
writeToDatabase(data)

})

observe({
x <- 1
x outside of isolate() is affected
isolate(x <- 2)
print(x) # 2

y <- 1
Use local() to avoid affecting calling environment
isolate(local(y <- 2))
print(y) # 1

})

94 isTruthy

End(Not run)

Can also use isolate to call reactive expressions from the R console
values <- reactiveValues(A=1)
fun <- reactive({ as.character(values$A) })
isolate(fun())
"1"

isolate also works if the reactive expression accesses values from the
input object, like input$x

isRunning Check whether a Shiny application is running

Description

This function tests whether a Shiny application is currently running.

Usage

isRunning()

Value

TRUE if a Shiny application is currently running. Otherwise, FALSE.

isTruthy Truthy and falsy values

Description

The terms "truthy" and "falsy" generally indicate whether a value, when coerced to a base::logical(),
is TRUE or FALSE. We use the term a little loosely here; our usage tries to match the intuitive notions
of "Is this value missing or available?", or "Has the user provided an answer?", or in the case of
action buttons, "Has the button been clicked?".

Usage

isTruthy(x)

Arguments

x An expression whose truthiness value we want to determine

loadSupport 95

Details

For example, a textInput that has not been filled out by the user has a value of "", so that is
considered a falsy value.

To be precise, a value is truthy unless it is one of:

• FALSE

• NULL

• ""

• An empty atomic vector

• An atomic vector that contains only missing values

• A logical vector that contains all FALSE or missing values

• An object of class "try-error"

• A value that represents an unclicked actionButton()

Note in particular that the value 0 is considered truthy, even though as.logical(0) is FALSE.

loadSupport Load an app’s supporting R files

Description

Loads all of the supporting R files of a Shiny application. Specifically, this function loads any
top-level supporting .R files in the R/ directory adjacent to the app.R/server.R/ui.R files.

Usage

loadSupport(
appDir = NULL,
renv = new.env(parent = globalenv()),
globalrenv = globalenv()

)

Arguments

appDir The application directory. If appDir is NULL or not supplied, the nearest enclos-
ing directory that is a Shiny app, starting with the current directory, is used.

renv The environment in which the files in the R/ directory should be evaluated.

globalrenv The environment in which global.R should be evaluated. If NULL, global.R
will not be evaluated at all.

96 markdown

Details

Since Shiny 1.5.0, this function is called by default when running an application. If it causes
problems, there are two ways to opt out. You can either place a file named _disable_autoload.R
in your R/ directory, or set options(shiny.autoload.r=FALSE). If you set this option, it will
affect any application that runs later in the same R session, potentially breaking it, so after running
your application, you should unset option with options(shiny.autoload.r=NULL)

The files are sourced in alphabetical order (as determined by list.files). global.R is evaluated before
the supporting R files in the R/ directory.

markdown Insert inline Markdown

Description

This function accepts Markdown-syntax text and returns HTML that may be included in Shiny UIs.

Usage

markdown(mds, extensions = TRUE, .noWS = NULL, ...)

Arguments

mds A character vector of Markdown source to convert to HTML. If the vector
has more than one element, a single-element character vector of concatenated
HTML is returned.

extensions Enable Github syntax extensions; defaults to TRUE.

.noWS Character vector used to omit some of the whitespace that would normally be
written around generated HTML. Valid options include before, after, and
outside (equivalent to before and end).

... Additional arguments to pass to commonmark::markdown_html(). These argu-
ments are dynamic.

Details

Leading whitespace is trimmed from Markdown text with glue::trim(). Whitespace trimming
ensures Markdown is processed correctly even when the call to markdown() is indented within
surrounding R code.

By default, Github extensions are enabled, but this can be disabled by passing extensions = FALSE.

Markdown rendering is performed by commonmark::markdown_html(). Additional arguments to
markdown() are passed as arguments to markdown_html()

Value

a character vector marked as HTML.

https://en.wikipedia.org/wiki/Markdown

markRenderFunction 97

Examples

ui <- fluidPage(
markdown("
Markdown Example

This is a markdown paragraph, and will be contained within a `<p>` tag
in the UI.

The following is an unordered list, which will be represented in the UI as
a `` with `` children:

* a bullet
* another

[Links](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a) work;
so does *emphasis*.

To see more of what's possible, check out commonmark.org/help.
")

)

markRenderFunction Mark a function as a render function

Description

[Superseded] Please use createRenderFunction() to support async execution. (Shiny 1.1.0)

Usage

markRenderFunction(
uiFunc,
renderFunc,
outputArgs = list(),
cacheHint = "auto",
cacheWriteHook = NULL,
cacheReadHook = NULL

)

Arguments

uiFunc A function that renders Shiny UI. Must take a single argument: an output ID.

renderFunc A function that is suitable for assigning to a Shiny output slot.

outputArgs A list of arguments to pass to the uiFunc. Render functions should include
outputArgs = list() in their own parameter list, and pass through the value to
markRenderFunction, to allow app authors to customize outputs. (Currently,
this is only supported for dynamically generated UIs, such as those created by
Shiny code snippets embedded in R Markdown documents).

98 maskReactiveContext

cacheHint One of "auto", FALSE, or some other information to identify this instance for
caching using bindCache(). If "auto", it will try to automatically infer caching
information. If FALSE, do not allow caching for the object. Some render func-
tions (such as renderPlot) contain internal state that makes them unsuitable for
caching.

cacheWriteHook Used if the render function is passed to bindCache(). This is an optional call-
back function to invoke before saving the value from the render function to
the cache. This function must accept one argument, the value returned from
renderFunc, and should return the value to store in the cache.

cacheReadHook Used if the render function is passed to bindCache(). This is an optional
callback function to invoke after reading a value from the cache (if there is
a cache hit). The function will be passed one argument, the value retrieved
from the cache. This can be useful when some side effect needs to occur for
a render function to behave correctly. For example, some render functions call
createWebDependency() so that Shiny is able to serve JS and CSS resources.

Details

Should be called by implementers of renderXXX functions in order to mark their return values as
Shiny render functions, and to provide a hint to Shiny regarding what UI function is most commonly
used with this type of render function. This can be used in R Markdown documents to create
complete output widgets out of just the render function.

Note that it is generally preferable to use createRenderFunction() instead of markRenderFunction().
It essentially wraps up the user-provided expression in the transform function passed to it, then
passes the resulting function to markRenderFunction(). It also provides a simpler calling inter-
face. There may be cases where markRenderFunction() must be used instead of createRenderFunction()
– for example, when the transform parameter of createRenderFunction() is not flexible enough
for your needs.

Value

The renderFunc function, with annotations.

See Also

createRenderFunction()

maskReactiveContext Evaluate an expression without a reactive context

Description

Temporarily blocks the current reactive context and evaluates the given expression. Any attempt to
directly access reactive values or expressions in expr will give the same results as doing it at the
top-level (by default, an error).

MockShinySession 99

Usage

maskReactiveContext(expr)

Arguments

expr An expression to evaluate.

Value

The value of expr.

See Also

isolate()

MockShinySession Mock Shiny Session

Description

An R6 class suitable for testing purposes. Simulates, to the extent possible, the behavior of the
ShinySession class. The session parameter provided to Shiny server functions and modules is an
instance of a ShinySession in normal operation.

Most kinds of module and server testing do not require this class be instantiated manually. See
instead testServer().

In order to support advanced usage, instances of MockShinySession are unlocked so that public
methods and fields of instances may be modified. For example, in order to test authentication
workflows, the user or groups fields may be overridden. Modified instances of MockShinySession
may then be passed explicitly as the session argument of testServer().

Public fields

env The environment associated with the session.

returned The value returned by the module under test.

singletons Hardcoded as empty. Needed for rendering HTML (i.e. renderUI).

clientData Mock client data that always returns a size for plots.

output The shinyoutputs associated with the session.

input The reactive inputs associated with the session.

userData An environment initialized as empty.

progressStack A stack of progress objects.

token On a real ShinySession, used to identify this instance in URLs.

cache The session cache object.

appcache The app cache object.

100 MockShinySession

restoreContext Part of bookmarking support in a real ShinySession but always NULL for a
MockShinySession.

groups Character vector of groups associated with an authenticated user. Always NULL for a
MockShinySesion.

user The username of an authenticated user. Always NULL for a MockShinySession.

options A list containing session-level shinyOptions.

Active bindings

files For internal use only.

downloads For internal use only.

closed Deprecated in ShinySession and signals an error.

session Deprecated in ShinySession and signals an error.

request An empty environment where the request should be. The request isn’t meaningfully
mocked currently.

Methods

Public methods:
• MockShinySession$new()

• MockShinySession$onFlush()

• MockShinySession$onFlushed()

• MockShinySession$onEnded()

• MockShinySession$isEnded()

• MockShinySession$isClosed()

• MockShinySession$close()

• MockShinySession$cycleStartAction()

• MockShinySession$fileUrl()

• MockShinySession$setInputs()

• MockShinySession$.scheduleTask()

• MockShinySession$elapse()

• MockShinySession$.now()

• MockShinySession$defineOutput()

• MockShinySession$getOutput()

• MockShinySession$ns()

• MockShinySession$flushReact()

• MockShinySession$makeScope()

• MockShinySession$setEnv()

• MockShinySession$setReturned()

• MockShinySession$getReturned()

• MockShinySession$genId()

• MockShinySession$rootScope()

• MockShinySession$onUnhandledError()

MockShinySession 101

• MockShinySession$unhandledError()

• MockShinySession$freezeValue()

• MockShinySession$onSessionEnded()

• MockShinySession$registerDownload()

• MockShinySession$getCurrentOutputInfo()

• MockShinySession$clone()

Method new(): Create a new MockShinySession.

Usage:
MockShinySession$new()

Method onFlush(): Define a callback to be invoked before a reactive flush

Usage:
MockShinySession$onFlush(fun, once = TRUE)

Arguments:
fun The function to invoke
once If TRUE, will only run once. Otherwise, will run every time reactives are flushed.

Method onFlushed(): Define a callback to be invoked after a reactive flush

Usage:
MockShinySession$onFlushed(fun, once = TRUE)

Arguments:
fun The function to invoke
once If TRUE, will only run once. Otherwise, will run every time reactives are flushed.

Method onEnded(): Define a callback to be invoked when the session ends

Usage:
MockShinySession$onEnded(sessionEndedCallback)

Arguments:
sessionEndedCallback The callback to invoke when the session has ended.

Method isEnded(): Returns FALSE if the session has not yet been closed

Usage:
MockShinySession$isEnded()

Method isClosed(): Returns FALSE if the session has not yet been closed

Usage:
MockShinySession$isClosed()

Method close(): Closes the session

Usage:
MockShinySession$close()

Method cycleStartAction(): Unsophisticated mock implementation that merely invokes

102 MockShinySession

Usage:
MockShinySession$cycleStartAction(callback)

Arguments:
callback The callback to be invoked.

Method fileUrl(): Base64-encode the given file. Needed for image rendering.

Usage:
MockShinySession$fileUrl(name, file, contentType = "application/octet-stream")

Arguments:
name Not used
file The file to be encoded
contentType The content type of the base64-encoded string

Method setInputs(): Sets reactive values associated with the session$inputs object and
flushes the reactives.

Usage:
MockShinySession$setInputs(...)

Arguments:
... The inputs to set. These arguments are processed with rlang::list2() and so are dy-

namic. Input names may not be duplicated.

Examples:
\dontrun{
session$setInputs(x=1, y=2)
}

Method .scheduleTask(): An internal method which shouldn’t be used by others. Schedules
callback for execution after some number of millis milliseconds.

Usage:
MockShinySession$.scheduleTask(millis, callback)

Arguments:
millis The number of milliseconds on which to schedule a callback
callback The function to schedule.

Method elapse(): Simulate the passing of time by the given number of milliseconds.

Usage:
MockShinySession$elapse(millis)

Arguments:
millis The number of milliseconds to advance time.

Method .now(): An internal method which shouldn’t be used by others.

Usage:
MockShinySession$.now()

Returns: Elapsed time in milliseconds.

MockShinySession 103

Method defineOutput(): An internal method which shouldn’t be used by others. Defines an
output in a way that sets private$currentOutputName appropriately.

Usage:
MockShinySession$defineOutput(name, func, label)

Arguments:
name The name of the output.
func The render definition.
label Not used.

Method getOutput(): An internal method which shouldn’t be used by others. Forces evaluation
of any reactive dependencies of the output function.

Usage:
MockShinySession$getOutput(name)

Arguments:
name The name of the output.

Returns: The return value of the function responsible for rendering the output.

Method ns(): Returns the given id prefixed by this namespace’s id.

Usage:
MockShinySession$ns(id)

Arguments:
id The id to prefix with a namespace id.

Returns: The id with a namespace prefix.

Method flushReact(): Trigger a reactive flush right now.

Usage:
MockShinySession$flushReact()

Method makeScope(): Create and return a namespace-specific session proxy.

Usage:
MockShinySession$makeScope(namespace)

Arguments:
namespace Character vector indicating a namespace.

Returns: A new session proxy.

Method setEnv(): Set the environment associated with a testServer() call, but only if it has not
previously been set. This ensures that only the environment of the outermost module under test is
the one retained. In other words, the first assignment wins.

Usage:
MockShinySession$setEnv(env)

Arguments:
env The environment to retain.

104 MockShinySession

Returns: The provided env.

Method setReturned(): Set the value returned by the module call and proactively flush. Note
that this method may be called multiple times if modules are nested. The last assignment, corre-
sponding to an invocation of setReturned() in the outermost module, wins.

Usage:
MockShinySession$setReturned(value)

Arguments:
value The value returned from the module

Returns: The provided value.

Method getReturned(): Get the value returned by the module call.

Usage:
MockShinySession$getReturned()

Returns: The value returned by the module call

Method genId(): Generate a distinct character identifier for use as a proxy namespace.

Usage:
MockShinySession$genId()

Returns: A character identifier unique to the current session.

Method rootScope(): Provides a way to access the root MockShinySession from any descen-
dant proxy.

Usage:
MockShinySession$rootScope()

Returns: The root MockShinySession.

Method onUnhandledError(): Add an unhandled error callback.

Usage:
MockShinySession$onUnhandledError(callback)

Arguments:
callback The callback to add, which should accept an error object as its first argument.

Returns: A deregistration function.

Method unhandledError(): Called by observers when a reactive expression errors.

Usage:
MockShinySession$unhandledError(e, close = TRUE)

Arguments:
e An error object.
close If TRUE, the session will be closed after the error is handled, defaults to FALSE.

Method freezeValue(): Freeze a value until the flush cycle completes.

Usage:

MockShinySession 105

MockShinySession$freezeValue(x, name)

Arguments:
x A ReactiveValues object.
name The name of a reactive value within x.

Method onSessionEnded(): Registers the given callback to be invoked when the session is
closed (i.e. the connection to the client has been severed). The return value is a function which
unregisters the callback. If multiple callbacks are registered, the order in which they are invoked
is not guaranteed.

Usage:
MockShinySession$onSessionEnded(sessionEndedCallback)

Arguments:
sessionEndedCallback Function to call when the session ends.

Method registerDownload(): Associated a downloadable file with the session.
Usage:
MockShinySession$registerDownload(name, filename, contentType, content)

Arguments:
name The un-namespaced output name to associate with the downloadable file.
filename A string or function designating the name of the file.
contentType A string of the content type of the file. Not used by MockShinySession.
content A function that takes a single argument file that is a file path (string) of a nonexistent

temp file, and writes the content to that file path. (Reactive values and functions may be
used from this function.)

Method getCurrentOutputInfo(): Get information about the output that is currently being
executed.

Usage:
MockShinySession$getCurrentOutputInfo()

Returns: A list with with the name of the output. If no output is currently being executed, this
will return NULL. output, or NULL if no output is currently executing.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MockShinySession$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `MockShinySession$setInputs`
--

Not run:
session$setInputs(x=1, y=2)

End(Not run)

106 modalDialog

modalDialog Create a modal dialog UI

Description

modalDialog() creates the UI for a modal dialog, using Bootstrap’s modal class. Modals are
typically used for showing important messages, or for presenting UI that requires input from the
user, such as a user name and password input.

modalButton() creates a button that will dismiss the dialog when clicked, typically used when
customising the footer.

Usage

modalDialog(
...,
title = NULL,
footer = modalButton("Dismiss"),
size = c("m", "s", "l", "xl"),
easyClose = FALSE,
fade = TRUE

)

modalButton(label, icon = NULL)

Arguments

... UI elements for the body of the modal dialog box.

title An optional title for the dialog.

footer UI for footer. Use NULL for no footer.

size One of "s" for small, "m" (the default) for medium, "l" for large, or "xl" for
extra large. Note that "xl" only works with Bootstrap 4 and above (to opt-in
to Bootstrap 4+, pass bslib::bs_theme() to the theme argument of a page
container like fluidPage()).

easyClose If TRUE, the modal dialog can be dismissed by clicking outside the dialog box,
or be pressing the Escape key. If FALSE (the default), the modal dialog can’t
be dismissed in those ways; instead it must be dismissed by clicking on a
modalButton(), or from a call to removeModal() on the server.

fade If FALSE, the modal dialog will have no fade-in animation (it will simply appear
rather than fade in to view).

label The contents of the button or link–usually a text label, but you could also use
any other HTML, like an image.

icon An optional icon() to appear on the button.

modalDialog 107

Examples

if (interactive()) {
Display an important message that can be dismissed only by clicking the
dismiss button.
shinyApp(

ui = basicPage(
actionButton("show", "Show modal dialog")

),
server = function(input, output) {

observeEvent(input$show, {
showModal(modalDialog(

title = "Important message",
"This is an important message!"

))
})

}
)

Display a message that can be dismissed by clicking outside the modal dialog,
or by pressing Esc.
shinyApp(

ui = basicPage(
actionButton("show", "Show modal dialog")

),
server = function(input, output) {

observeEvent(input$show, {
showModal(modalDialog(

title = "Somewhat important message",
"This is a somewhat important message.",
easyClose = TRUE,
footer = NULL

))
})

}
)

Display a modal that requires valid input before continuing.
shinyApp(

ui = basicPage(
actionButton("show", "Show modal dialog"),
verbatimTextOutput("dataInfo")

),

server = function(input, output) {
reactiveValues object for storing current data set.
vals <- reactiveValues(data = NULL)

Return the UI for a modal dialog with data selection input. If 'failed' is
TRUE, then display a message that the previous value was invalid.
dataModal <- function(failed = FALSE) {

108 moduleServer

modalDialog(
textInput("dataset", "Choose data set",

placeholder = 'Try "mtcars" or "abc"'
),
span('(Try the name of a valid data object like "mtcars", ',

'then a name of a non-existent object like "abc")'),
if (failed)

div(tags$b("Invalid name of data object", style = "color: red;")),

footer = tagList(
modalButton("Cancel"),
actionButton("ok", "OK")

)
)

}

Show modal when button is clicked.
observeEvent(input$show, {

showModal(dataModal())
})

When OK button is pressed, attempt to load the data set. If successful,
remove the modal. If not show another modal, but this time with a failure
message.
observeEvent(input$ok, {

Check that data object exists and is data frame.
if (!is.null(input$dataset) && nzchar(input$dataset) &&

exists(input$dataset) && is.data.frame(get(input$dataset))) {
vals$data <- get(input$dataset)
removeModal()

} else {
showModal(dataModal(failed = TRUE))

}
})

Display information about selected data
output$dataInfo <- renderPrint({

if (is.null(vals$data))
"No data selected"

else
summary(vals$data)

})
}

)
}

moduleServer Shiny modules

moduleServer 109

Description

Shiny’s module feature lets you break complicated UI and server logic into smaller, self-contained
pieces. Compared to large monolithic Shiny apps, modules are easier to reuse and easier to reason
about. See the article at https://shiny.rstudio.com/articles/modules.html to learn more.

Usage

moduleServer(id, module, session = getDefaultReactiveDomain())

Arguments

id An ID string that corresponds with the ID used to call the module’s UI function.

module A Shiny module server function.

session Session from which to make a child scope (the default should almost always be
used).

Details

Starting in Shiny 1.5.0, we recommend using moduleServer instead of callModule(), because the
syntax is a little easier to understand, and modules created with moduleServer can be tested with
testServer().

Value

The return value, if any, from executing the module server function

See Also

https://shiny.rstudio.com/articles/modules.html

Examples

Define the UI for a module
counterUI <- function(id, label = "Counter") {

ns <- NS(id)
tagList(
actionButton(ns("button"), label = label),
verbatimTextOutput(ns("out"))

)
}

Define the server logic for a module
counterServer <- function(id) {

moduleServer(
id,
function(input, output, session) {

count <- reactiveVal(0)
observeEvent(input$button, {

count(count() + 1)
})

https://shiny.rstudio.com/articles/modules.html
https://shiny.rstudio.com/articles/modules.html

110 moduleServer

output$out <- renderText({
count()

})
count

}
)

}

Use the module in an app
ui <- fluidPage(

counterUI("counter1", "Counter #1"),
counterUI("counter2", "Counter #2")

)
server <- function(input, output, session) {

counterServer("counter1")
counterServer("counter2")

}
if (interactive()) {

shinyApp(ui, server)
}

If you want to pass extra parameters to the module's server logic, you can
add them to your function. In this case `prefix` is text that will be
printed before the count.
counterServer2 <- function(id, prefix = NULL) {

moduleServer(
id,
function(input, output, session) {

count <- reactiveVal(0)
observeEvent(input$button, {

count(count() + 1)
})
output$out <- renderText({

paste0(prefix, count())
})
count

}
)

}

ui <- fluidPage(
counterUI("counter", "Counter"),

)
server <- function(input, output, session) {

counterServer2("counter", "The current count is: ")
}
if (interactive()) {

shinyApp(ui, server)
}

navbarPage 111

navbarPage Create a page with a top level navigation bar

Description

Create a page that contains a top level navigation bar that can be used to toggle a set of tabPanel()
elements.

Usage

navbarPage(
title,
...,
id = NULL,
selected = NULL,
position = c("static-top", "fixed-top", "fixed-bottom"),
header = NULL,
footer = NULL,
inverse = FALSE,
collapsible = FALSE,
fluid = TRUE,
theme = NULL,
windowTitle = NA,
lang = NULL

)

navbarMenu(title, ..., menuName = title, icon = NULL)

Arguments

title The title to display in the navbar

... tabPanel() elements to include in the page. The navbarMenu function also
accepts strings, which will be used as menu section headers. If the string is a set
of dashes like "----" a horizontal separator will be displayed in the menu.

id If provided, you can use input$id in your server logic to determine which of
the current tabs is active. The value will correspond to the value argument that
is passed to tabPanel().

selected The value (or, if none was supplied, the title) of the tab that should be selected
by default. If NULL, the first tab will be selected.

position Determines whether the navbar should be displayed at the top of the page with
normal scrolling behavior ("static-top"), pinned at the top ("fixed-top"),
or pinned at the bottom ("fixed-bottom"). Note that using "fixed-top" or
"fixed-bottom" will cause the navbar to overlay your body content, unless you
add padding, e.g.: tags$style(type="text/css", "body {padding-top: 70px;}")

header Tag or list of tags to display as a common header above all tabPanels.

112 navbarPage

footer Tag or list of tags to display as a common footer below all tabPanels

inverse TRUE to use a dark background and light text for the navigation bar

collapsible TRUE to automatically collapse the navigation elements into an expandable menu
on mobile devices or narrow window widths.

fluid TRUE to use a fluid layout. FALSE to use a fixed layout.

theme One of the following:

• NULL (the default), which implies a "stock" build of Bootstrap 3.
• A bslib::bs_theme() object. This can be used to replace a stock build of

Bootstrap 3 with a customized version of Bootstrap 3 or higher.
• A character string pointing to an alternative Bootstrap stylesheet (normally

a css file within the www directory, e.g. www/bootstrap.css).

windowTitle the browser window title (as a character string). The default value, NA, means to
use any character strings that appear in title (if none are found, the host URL
of the page is displayed by default).

lang ISO 639-1 language code for the HTML page, such as "en" or "ko". This will
be used as the lang in the <html> tag, as in <html lang="en">. The default
(NULL) results in an empty string.

menuName A name that identifies this navbarMenu. This is needed if you want to in-
sert/remove or show/hide an entire navbarMenu.

icon Optional icon to appear on a navbarMenu tab.

Details

The navbarMenu function can be used to create an embedded menu within the navbar that in turns
includes additional tabPanels (see example below).

Value

A UI definition that can be passed to the shinyUI function.

See Also

tabPanel(), tabsetPanel(), updateNavbarPage(), insertTab(), showTab()

Other layout functions: fillPage(), fixedPage(), flowLayout(), fluidPage(), sidebarLayout(),
splitLayout(), verticalLayout()

Examples

navbarPage("App Title",
tabPanel("Plot"),
tabPanel("Summary"),
tabPanel("Table")

)

navbarPage("App Title",
tabPanel("Plot"),
navbarMenu("More",

navlistPanel 113

tabPanel("Summary"),
"----",
"Section header",
tabPanel("Table")

)
)

navlistPanel Create a navigation list panel

Description

Create a navigation list panel that provides a list of links on the left which navigate to a set of
tabPanels displayed to the right.

Usage

navlistPanel(
...,
id = NULL,
selected = NULL,
header = NULL,
footer = NULL,
well = TRUE,
fluid = TRUE,
widths = c(4, 8)

)

Arguments

... tabPanel() elements to include in the navlist
id If provided, you can use input$id in your server logic to determine which of the

current navlist items is active. The value will correspond to the value argument
that is passed to tabPanel().

selected The value (or, if none was supplied, the title) of the navigation item that
should be selected by default. If NULL, the first navigation will be selected.

header Tag or list of tags to display as a common header above all tabPanels.
footer Tag or list of tags to display as a common footer below all tabPanels
well TRUE to place a well (gray rounded rectangle) around the navigation list.
fluid TRUE to use fluid layout; FALSE to use fixed layout.
widths Column widths of the navigation list and tabset content areas respectively.

Details

You can include headers within the navlistPanel by including plain text elements in the list.
Versions of Shiny before 0.11 supported separators with "——", but as of 0.11, separators were
no longer supported. This is because version 0.11 switched to Bootstrap 3, which doesn’t support
separators.

114 NS

See Also

tabPanel(), updateNavlistPanel(), insertTab(), showTab()

Examples

fluidPage(

titlePanel("Application Title"),

navlistPanel(
"Header",
tabPanel("First"),
tabPanel("Second"),
tabPanel("Third")

)
)

NS Namespaced IDs for inputs/outputs

Description

The NS function creates namespaced IDs out of bare IDs, by joining them using ns.sep as the
delimiter. It is intended for use in Shiny modules. See https://shiny.rstudio.com/articles/
modules.html.

Usage

NS(namespace, id = NULL)

ns.sep

Arguments

namespace The character vector to use for the namespace. This can have any length, though
a single element is most common. Length 0 will cause the id to be returned
without a namespace, and length 2 will be interpreted as multiple namespaces,
in increasing order of specificity (i.e. starting with the top-level namespace).

id The id string to be namespaced (optional).

Format

An object of class character of length 1.

https://shiny.rstudio.com/articles/modules.html
https://shiny.rstudio.com/articles/modules.html

numericInput 115

Details

Shiny applications use IDs to identify inputs and outputs. These IDs must be unique within an
application, as accidentally using the same input/output ID more than once will result in unexpected
behavior. The traditional solution for preventing name collisions is namespaces; a namespace is to
an ID as a directory is to a file. Use the NS function to turn a bare ID into a namespaced one, by
combining them with ns.sep in between.

Value

If id is missing, returns a function that expects an id string as its only argument and returns that id
with the namespace prepended.

See Also

https://shiny.rstudio.com/articles/modules.html

numericInput Create a numeric input control

Description

Create an input control for entry of numeric values

Usage

numericInput(
inputId,
label,
value,
min = NA,
max = NA,
step = NA,
width = NULL

)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

min Minimum allowed value

max Maximum allowed value

step Interval to use when stepping between min and max

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

https://shiny.rstudio.com/articles/modules.html

116 observe

Value

A numeric input control that can be added to a UI definition.

Server value

A numeric vector of length 1.

See Also

updateNumericInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
numericInput("obs", "Observations:", 10, min = 1, max = 100),
verbatimTextOutput("value")

)
server <- function(input, output) {

output$value <- renderText({ input$obs })
}
shinyApp(ui, server)
}

observe Create a reactive observer

Description

Creates an observer from the given expression.

Usage

observe(
x,
env = parent.frame(),
quoted = FALSE,
...,
label = NULL,
suspended = FALSE,
priority = 0,
domain = getDefaultReactiveDomain(),

observe 117

autoDestroy = TRUE,
..stacktraceon = TRUE

)

Arguments

x An expression (quoted or unquoted). Any return value will be ignored.

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
x is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of x will be used when x is evaluated. If
x is a quosure and you would like to use its expression as a value for x, then you
must set quoted to TRUE.

... Not used.

label A label for the observer, useful for debugging.

suspended If TRUE, start the observer in a suspended state. If FALSE (the default), start in a
non-suspended state.

priority An integer or numeric that controls the priority with which this observer should
be executed. A higher value means higher priority: an observer with a higher
priority value will execute before all observers with lower priority values. Posi-
tive, negative, and zero values are allowed.

domain See domains.

autoDestroy If TRUE (the default), the observer will be automatically destroyed when its do-
main (if any) ends.

..stacktraceon Advanced use only. For stack manipulation purposes; see stacktrace().

Details

An observer is like a reactive expression in that it can read reactive values and call reactive ex-
pressions, and will automatically re-execute when those dependencies change. But unlike reactive
expressions, it doesn’t yield a result and can’t be used as an input to other reactive expressions.
Thus, observers are only useful for their side effects (for example, performing I/O).

Another contrast between reactive expressions and observers is their execution strategy. Reactive
expressions use lazy evaluation; that is, when their dependencies change, they don’t re-execute right
away but rather wait until they are called by someone else. Indeed, if they are not called then they
will never re-execute. In contrast, observers use eager evaluation; as soon as their dependencies
change, they schedule themselves to re-execute.

Starting with Shiny 0.10.0, observers are automatically destroyed by default when the domain that
owns them ends (e.g. when a Shiny session ends).

Value

An observer reference class object. This object has the following methods:

suspend() Causes this observer to stop scheduling flushes (re-executions) in response to invalida-
tions. If the observer was invalidated prior to this call but it has not re-executed yet then that
re-execution will still occur, because the flush is already scheduled.

118 observeEvent

resume() Causes this observer to start re-executing in response to invalidations. If the observer
was invalidated while suspended, then it will schedule itself for re-execution.

destroy() Stops the observer from executing ever again, even if it is currently scheduled for re-
execution.

setPriority(priority = 0) Change this observer’s priority. Note that if the observer is currently
invalidated, then the change in priority will not take effect until the next invalidation–unless
the observer is also currently suspended, in which case the priority change will be effective
upon resume.

setAutoDestroy(autoDestroy) Sets whether this observer should be automatically destroyed
when its domain (if any) ends. If autoDestroy is TRUE and the domain already ended, then
destroy() is called immediately."

onInvalidate(callback) Register a callback function to run when this observer is invalidated.
No arguments will be provided to the callback function when it is invoked.

Examples

values <- reactiveValues(A=1)

obsB <- observe({
print(values$A + 1)

})

To store expressions for later conversion to observe, use rlang::quo()
myquo <- rlang::quo({ print(values$A + 3) })
obsC <- rlang::inject(observe(!!myquo))

(Legacy) Can use quoted expressions
obsD <- observe(quote({ print(values$A + 2) }), quoted = TRUE)

In a normal Shiny app, the web client will trigger flush events. If you
are at the console, you can force a flush with flushReact()
shiny:::flushReact()

observeEvent Event handler

Description

Respond to "event-like" reactive inputs, values, and expressions. As of Shiny 1.6.0, we recom-
mend using bindEvent() instead of eventReactive() and observeEvent(). This is because
bindEvent() can be composed with bindCache(), and because it can also be used with render
functions (like renderText() and renderPlot()).

Usage

observeEvent(
eventExpr,

observeEvent 119

handlerExpr,
event.env = parent.frame(),
event.quoted = FALSE,
handler.env = parent.frame(),
handler.quoted = FALSE,
...,
label = NULL,
suspended = FALSE,
priority = 0,
domain = getDefaultReactiveDomain(),
autoDestroy = TRUE,
ignoreNULL = TRUE,
ignoreInit = FALSE,
once = FALSE

)

eventReactive(
eventExpr,
valueExpr,
event.env = parent.frame(),
event.quoted = FALSE,
value.env = parent.frame(),
value.quoted = FALSE,
...,
label = NULL,
domain = getDefaultReactiveDomain(),
ignoreNULL = TRUE,
ignoreInit = FALSE

)

Arguments

eventExpr A (quoted or unquoted) expression that represents the event; this can be a simple
reactive value like input$click, a call to a reactive expression like dataset(),
or even a complex expression inside curly braces

handlerExpr The expression to call whenever eventExpr is invalidated. This should be a
side-effect-producing action (the return value will be ignored). It will be exe-
cuted within an isolate() scope.

event.env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
eventExpr is a quosure and event.quoted is TRUE, then event.env is ignored.

event.quoted If it is TRUE, then the quote()ed value of eventExpr will be used when eventExpr
is evaluated. If eventExpr is a quosure and you would like to use its expression
as a value for eventExpr, then you must set event.quoted to TRUE.

handler.env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
handlerExpr is a quosure and handler.quoted is TRUE, then handler.env is
ignored.

120 observeEvent

handler.quoted If it is TRUE, then the quote()ed value of handlerExpr will be used when
handlerExpr is evaluated. If handlerExpr is a quosure and you would like to
use its expression as a value for handlerExpr, then you must set handler.quoted
to TRUE.

... Currently not used.

label A label for the observer or reactive, useful for debugging.

suspended If TRUE, start the observer in a suspended state. If FALSE (the default), start in a
non-suspended state.

priority An integer or numeric that controls the priority with which this observer should
be executed. An observer with a given priority level will always execute sooner
than all observers with a lower priority level. Positive, negative, and zero values
are allowed.

domain See domains.

autoDestroy If TRUE (the default), the observer will be automatically destroyed when its do-
main (if any) ends.

ignoreNULL Whether the action should be triggered (or value calculated, in the case of
eventReactive) when the input event expression is NULL. See Details.

ignoreInit If TRUE, then, when this observeEvent is first created/initialized, ignore the
handlerExpr (the second argument), whether it is otherwise supposed to run or
not. The default is FALSE. See Details.

once Whether this observeEvent should be immediately destroyed after the first time
that the code in handlerExpr is run. This pattern is useful when you want to
subscribe to a event that should only happen once.

valueExpr The expression that produces the return value of the eventReactive. It will be
executed within an isolate() scope.

value.env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
valueExpr is a quosure and value.quoted is TRUE, then value.env is ignored.

value.quoted If it is TRUE, then the quote()ed value of valueExpr will be used when valueExpr
is evaluated. If valueExpr is a quosure and you would like to use its expression
as a value for valueExpr, then you must set value.quoted to TRUE.

Details

Shiny’s reactive programming framework is primarily designed for calculated values (reactive ex-
pressions) and side-effect-causing actions (observers) that respond to any of their inputs changing.
That’s often what is desired in Shiny apps, but not always: sometimes you want to wait for a specific
action to be taken from the user, like clicking an actionButton(), before calculating an expression
or taking an action. A reactive value or expression that is used to trigger other calculations in this
way is called an event.

These situations demand a more imperative, "event handling" style of programming that is possible–
but not particularly intuitive–using the reactive programming primitives observe() and isolate().
observeEvent and eventReactive provide straightforward APIs for event handling that wrap
observe and isolate.

observeEvent 121

Use observeEvent whenever you want to perform an action in response to an event. (Note that
"recalculate a value" does not generally count as performing an action–see eventReactive for
that.) The first argument is the event you want to respond to, and the second argument is a function
that should be called whenever the event occurs. Note that observeEvent() is equivalent to using
observe() %>% bindEvent() and as of Shiny 1.6.0, we recommend the latter.

Use eventReactive to create a calculated value that only updates in response to an event. This is
just like a normal reactive expression except it ignores all the usual invalidations that come from its
reactive dependencies; it only invalidates in response to the given event. Note that eventReactive()
is equivalent to using reactive() %>% bindEvent() and as of Shiny 1.6.0, we recommend the lat-
ter.

Value

observeEvent returns an observer reference class object (see observe()). eventReactive returns
a reactive expression object (see reactive()).

ignoreNULL and ignoreInit

Both observeEvent and eventReactive take an ignoreNULL parameter that affects behavior when
the eventExpr evaluates to NULL (or in the special case of an actionButton(), 0). In these cases,
if ignoreNULL is TRUE, then an observeEvent will not execute and an eventReactive will raise a
silent validation error. This is useful behavior if you don’t want to do the action or calculation when
your app first starts, but wait for the user to initiate the action first (like a "Submit" button); whereas
ignoreNULL=FALSE is desirable if you want to initially perform the action/calculation and just let
the user re-initiate it (like a "Recalculate" button).

Likewise, both observeEvent and eventReactive also take in an ignoreInit argument. By de-
fault, both of these will run right when they are created (except if, at that moment, eventExpr eval-
uates to NULL and ignoreNULL is TRUE). But when responding to a click of an action button, it may
often be useful to set ignoreInit to TRUE. For example, if you’re setting up an observeEvent for a
dynamically created button, then ignoreInit = TRUE will guarantee that the action (in handlerExpr)
will only be triggered when the button is actually clicked, instead of also being triggered when it is
created/initialized. Similarly, if you’re setting up an eventReactive that responds to a dynamically
created button used to refresh some data (then returned by that eventReactive), then you should
use eventReactive([...], ignoreInit = TRUE) if you want to let the user decide if/when they
want to refresh the data (since, depending on the app, this may be a computationally expensive
operation).

Even though ignoreNULL and ignoreInit can be used for similar purposes they are independent
from one another. Here’s the result of combining these:

ignoreNULL = TRUE and ignoreInit = FALSE This is the default. This combination means that
handlerExpr/ valueExpr will run every time that eventExpr is not NULL. If, at the time of
the creation of the observeEvent/eventReactive, eventExpr happens to not be NULL, then
the code runs.

ignoreNULL = FALSE and ignoreInit = FALSE This combination means that handlerExpr/valueExpr
will run every time no matter what.

ignoreNULL = FALSE and ignoreInit = TRUE This combination means that handlerExpr/valueExpr
will not run when the observeEvent/eventReactive is created (because ignoreInit = TRUE),
but it will run every other time.

122 observeEvent

ignoreNULL = TRUE and ignoreInit = TRUE This combination means that handlerExpr/valueExpr
will not run when the observeEvent/eventReactive is created (because ignoreInit = TRUE).
After that, handlerExpr/valueExpr will run every time that eventExpr is not NULL.

See Also

actionButton()

Examples

Only run examples in interactive R sessions
if (interactive()) {

App 1: Sample usage
shinyApp(
ui = fluidPage(

column(4,
numericInput("x", "Value", 5),
br(),
actionButton("button", "Show")

),
column(8, tableOutput("table"))

),
server = function(input, output) {

Take an action every time button is pressed;
here, we just print a message to the console
observeEvent(input$button, {

cat("Showing", input$x, "rows\n")
})
The observeEvent() above is equivalent to:
observe({
cat("Showing", input$x, "rows\n")
}) %>%
bindEvent(input$button)

Take a reactive dependency on input$button, but
not on any of the stuff inside the function
df <- eventReactive(input$button, {

head(cars, input$x)
})
output$table <- renderTable({

df()
})

}
)

App 2: Using `once`
shinyApp(
ui = basicPage(actionButton("go", "Go")),
server = function(input, output, session) {

observeEvent(input$go, {
print(paste("This will only be printed once; all",

onBookmark 123

"subsequent button clicks won't do anything"))
}, once = TRUE)
The observeEvent() above is equivalent to:
observe({
print(paste("This will only be printed once; all",
"subsequent button clicks won't do anything"))
}) %>%
bindEvent(input$go, once = TRUE)

}
)

App 3: Using `ignoreInit` and `once`
shinyApp(

ui = basicPage(actionButton("go", "Go")),
server = function(input, output, session) {

observeEvent(input$go, {
insertUI("#go", "afterEnd",

actionButton("dynamic", "click to remove"))

set up an observer that depends on the dynamic
input, so that it doesn't run when the input is
created, and only runs once after that (since
the side effect is remove the input from the DOM)
observeEvent(input$dynamic, {

removeUI("#dynamic")
}, ignoreInit = TRUE, once = TRUE)

})
}

)
}

onBookmark Add callbacks for Shiny session bookmarking events

Description

These functions are for registering callbacks on Shiny session events. They should be called within
an application’s server function.

• onBookmark registers a function that will be called just before Shiny bookmarks state.

• onBookmarked registers a function that will be called just after Shiny bookmarks state.

• onRestore registers a function that will be called when a session is restored, after the server
function executes, but before all other reactives, observers and render functions are run.

• onRestored registers a function that will be called after a session is restored. This is similar
to onRestore, but it will be called after all reactives, observers, and render functions run, and
after results are sent to the client browser. onRestored callbacks can be useful for sending
update messages to the client browser.

124 onBookmark

Usage

onBookmark(fun, session = getDefaultReactiveDomain())

onBookmarked(fun, session = getDefaultReactiveDomain())

onRestore(fun, session = getDefaultReactiveDomain())

onRestored(fun, session = getDefaultReactiveDomain())

Arguments

fun A callback function which takes one argument.

session A shiny session object.

Details

All of these functions return a function which can be called with no arguments to cancel the regis-
tration.

The callback function that is passed to these functions should take one argument, typically named
"state" (for onBookmark, onRestore, and onRestored) or "url" (for onBookmarked).

For onBookmark, the state object has three relevant fields. The values field is an environment which
can be used to save arbitrary values (see examples). If the state is being saved to disk (as opposed
to being encoded in a URL), the dir field contains the name of a directory which can be used to
store extra files. Finally, the state object has an input field, which is simply the application’s input
object. It can be read, but not modified.

For onRestore and onRestored, the state object is a list. This list contains input, which is a
named list of input values to restore, values, which is an environment containing arbitrary values
that were saved in onBookmark, and dir, the name of the directory that the state is being restored
from, and which could have been used to save extra files.

For onBookmarked, the callback function receives a string with the bookmark URL. This callback
function should be used to display UI in the client browser with the bookmark URL. If no callback
function is registered, then Shiny will by default display a modal dialog with the bookmark URL.

Modules

These callbacks may also be used in Shiny modules. When used this way, the inputs and values will
automatically be namespaced for the module, and the callback functions registered for the module
will only be able to see the module’s inputs and values.

See Also

enableBookmarking for general information on bookmarking.

Examples

Only run these examples in interactive sessions
if (interactive()) {

onBookmark 125

Basic use of onBookmark and onRestore: This app saves the time in its
arbitrary values, and restores that time when the app is restored.
ui <- function(req) {

fluidPage(
textInput("txt", "Input text"),
bookmarkButton()

)
}
server <- function(input, output) {

onBookmark(function(state) {
savedTime <- as.character(Sys.time())
cat("Last saved at", savedTime, "\n")
state is a mutable reference object, and we can add arbitrary values to
it.
state$values$time <- savedTime

})

onRestore(function(state) {
cat("Restoring from state bookmarked at", state$values$time, "\n")

})
}
enableBookmarking("url")
shinyApp(ui, server)

ui <- function(req) {
fluidPage(

textInput("txt", "Input text"),
bookmarkButton()

)
}
server <- function(input, output, session) {

lastUpdateTime <- NULL

observeEvent(input$txt, {
updateTextInput(session, "txt",

label = paste0("Input text (Changed ", as.character(Sys.time()), ")")
)

})

onBookmark(function(state) {
Save content to a file
messageFile <- file.path(state$dir, "message.txt")
cat(as.character(Sys.time()), file = messageFile)

})

onRestored(function(state) {
Read the file
messageFile <- file.path(state$dir, "message.txt")
timeText <- readChar(messageFile, 1000)

updateTextInput must be called in onRestored, as opposed to onRestore,

126 onBookmark

because onRestored happens after the client browser is ready.
updateTextInput(session, "txt",

label = paste0("Input text (Changed ", timeText, ")")
)

})
}
"server" bookmarking is needed for writing to disk.
enableBookmarking("server")
shinyApp(ui, server)

This app has a module, and both the module and the main app code have
onBookmark and onRestore functions which write and read state$values$hash. The
module's version of state$values$hash does not conflict with the app's version
of state$values$hash.
#
A basic module that captializes text.
capitalizerUI <- function(id) {

ns <- NS(id)
wellPanel(
h4("Text captializer module"),
textInput(ns("text"), "Enter text:"),
verbatimTextOutput(ns("out"))

)
}
capitalizerServer <- function(input, output, session) {

output$out <- renderText({
toupper(input$text)

})
onBookmark(function(state) {

state$values$hash <- rlang::hash(input$text)
})
onRestore(function(state) {

if (identical(rlang::hash(input$text), state$values$hash)) {
message("Module's input text matches hash ", state$values$hash)

} else {
message("Module's input text does not match hash ", state$values$hash)

}
})

}
Main app code
ui <- function(request) {

fluidPage(
sidebarLayout(

sidebarPanel(
capitalizerUI("tc"),
textInput("text", "Enter text (not in module):"),
bookmarkButton()

),
mainPanel()

)
)

}

onFlush 127

server <- function(input, output, session) {
callModule(capitalizerServer, "tc")
onBookmark(function(state) {
state$values$hash <- rlang::hash(input$text)

})
onRestore(function(state) {

if (identical(rlang::hash(input$text), state$values$hash)) {
message("App's input text matches hash ", state$values$hash)

} else {
message("App's input text does not match hash ", state$values$hash)

}
})

}
enableBookmarking(store = "url")
shinyApp(ui, server)
}

onFlush Add callbacks for Shiny session events

Description

These functions are for registering callbacks on Shiny session events. onFlush registers a function
that will be called before Shiny flushes the reactive system. onFlushed registers a function that
will be called after Shiny flushes the reactive system. onUnhandledError registers a function to be
called when an unhandled error occurs before the session is closed. onSessionEnded registers a
function to be called after the client has disconnected.

These functions should be called within the application’s server function.

All of these functions return a function which can be called with no arguments to cancel the regis-
tration.

Usage

onFlush(fun, once = TRUE, session = getDefaultReactiveDomain())

onFlushed(fun, once = TRUE, session = getDefaultReactiveDomain())

onSessionEnded(fun, session = getDefaultReactiveDomain())

onUnhandledError(fun, session = getDefaultReactiveDomain())

Arguments

fun A callback function.

once Should the function be run once, and then cleared, or should it re-run each time
the event occurs. (Only for onFlush and onFlushed.)

session A shiny session object.

128 onFlush

Unhandled Errors

Unhandled errors are errors that aren’t otherwise handled by Shiny or by the application logic. In
other words, they are errors that will either cause the application to crash or will result in "Error"
output in the UI.

You can use onUnhandledError() to register a function that will be called when an unhandled
error occurs. This function will be called with the error object as its first argument. If the error is
fatal and will result in the session closing, the error condition will have the shiny.error.fatal
class.

Note that the onUnhandledError() callbacks cannot be used to prevent the app from closing or to
modify the error condition. Instead, they are intended to give you an opportunity to log the error or
perform other cleanup operations.

See Also

onStop() for registering callbacks that will be invoked when the application exits, or when a session
ends.

Examples

library(shiny)

ui <- fixedPage(
markdown(c(

"Set the number to 8 or higher to cause an error",
"in the `renderText()` output."

)),
sliderInput("number", "Number", 0, 10, 4),
textOutput("text"),
hr(),
markdown(c(
"Click the button below to crash the app with an unhandled error",
"in an `observe()` block."

)),
actionButton("crash", "Crash the app!")

)

log_event <- function(level, ...) {
ts <- strftime(Sys.time(), " [%F %T] ")
message(level, ts, ...)

}

server <- function(input, output, session) {
log_event("INFO", "Session started")

onUnhandledError(function(err) {
log the unhandled error
level <- if (inherits(err, "shiny.error.fatal")) "FATAL" else "ERROR"
log_event(level, conditionMessage(err))

})

onStop 129

onStop(function() {
log_event("INFO", "Session ended")

})

observeEvent(input$crash, stop("Oops, an unhandled error happened!"))

output$text <- renderText({
if (input$number > 7) {

stop("that's too high!")
}
sprintf("You picked number %d.", input$number)

})
}

shinyApp(ui, server)

onStop Run code after an application or session ends

Description

This function registers callback functions that are invoked when the application exits (when runApp()
exits), or after each user session ends (when a client disconnects).

Usage

onStop(fun, session = getDefaultReactiveDomain())

Arguments

fun A function that will be called after the app has finished running.

session A scope for when the callback will run. If onStop is called from within the
server function, this will default to the current session, and the callback will
be invoked when the current session ends. If onStop is called outside a server
function, then the callback will be invoked with the application exits. If NULL,
it is the same as calling onStop outside of the server function, and the callback
will be invoked when the application exits.

Value

A function which, if invoked, will cancel the callback.

See Also

onSessionEnded() for the same functionality, but at the session level only.

130 onStop

Examples

Only run this example in interactive R sessions
if (interactive()) {

Open this application in multiple browsers, then close the browsers.
shinyApp(
ui = basicPage("onStop demo"),

server = function(input, output, session) {
onStop(function() cat("Session stopped\n"))

},

onStart = function() {
cat("Doing application setup\n")

onStop(function() {
cat("Doing application cleanup\n")

})
}

)
}
In the example above, onStop() is called inside of onStart(). This is
the pattern that should be used when creating a shinyApp() object from
a function, or at the console. If instead you are writing an app.R which
will be invoked with runApp(), you can do it that way, or put the onStop()
before the shinyApp() call, as shown below.

Not run:
==== app.R ====
cat("Doing application setup\n")
onStop(function() {

cat("Doing application cleanup\n")
})

shinyApp(
ui = basicPage("onStop demo"),

server = function(input, output, session) {
onStop(function() cat("Session stopped\n"))

}
)
==== end app.R ====

Similarly, if you have a global.R, you can call onStop() from there.
==== global.R ====
cat("Doing application setup\n")
onStop(function() {

cat("Doing application cleanup\n")
})
==== end global.R ====

End(Not run)

outputOptions 131

outputOptions Set options for an output object.

Description

These are the available options for an output object:

• suspendWhenHidden. When TRUE (the default), the output object will be suspended (not
execute) when it is hidden on the web page. When FALSE, the output object will not suspend
when hidden, and if it was already hidden and suspended, then it will resume immediately.

• priority. The priority level of the output object. Queued outputs with higher priority values
will execute before those with lower values.

Usage

outputOptions(x, name, ...)

Arguments

x A shinyoutput object (typically output).

name The name of an output observer in the shinyoutput object.

... Options to set for the output observer.

Examples

Not run:
Get the list of options for all observers within output
outputOptions(output)

Disable suspend for output$myplot
outputOptions(output, "myplot", suspendWhenHidden = FALSE)

Change priority for output$myplot
outputOptions(output, "myplot", priority = 10)

Get the list of options for output$myplot
outputOptions(output, "myplot")

End(Not run)

132 parseQueryString

parseQueryString Parse a GET query string from a URL

Description

Returns a named list of key-value pairs.

Usage

parseQueryString(str, nested = FALSE)

Arguments

str The query string. It can have a leading "?" or not.

nested Whether to parse the query string of as a nested list when it contains pairs of
square brackets []. For example, the query ‘a[i1][j1]=x&b[i1][j1]=y&b[i2][j1]=z’
will be parsed as list(a = list(i1 = list(j1 = 'x')), b = list(i1 = list(j1
= 'y'), i2 = list(j1 = 'z'))) when nested = TRUE, and list(`a[i1][j1]`
= 'x',`b[i1][j1]` = 'y', `b[i2][j1]` = 'z') when nested = FALSE.

Examples

parseQueryString("?foo=1&bar=b%20a%20r")

Not run:
Example of usage within a Shiny app
function(input, output, session) {

output$queryText <- renderText({
query <- parseQueryString(session$clientData$url_search)

Ways of accessing the values
if (as.numeric(query$foo) == 1) {

Do something
}
if (query[["bar"]] == "targetstring") {

Do something else
}

Return a string with key-value pairs
paste(names(query), query, sep = "=", collapse=", ")

})
}

End(Not run)

passwordInput 133

passwordInput Create a password input control

Description

Create an password control for entry of passwords.

Usage

passwordInput(inputId, label, value = "", width = NULL, placeholder = NULL)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

placeholder A character string giving the user a hint as to what can be entered into the con-
trol. Internet Explorer 8 and 9 do not support this option.

Value

A text input control that can be added to a UI definition.

Server value

A character string of the password input. The default value is "" unless value is provided.

See Also

updateTextInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
passwordInput("password", "Password:"),
actionButton("go", "Go"),
verbatimTextOutput("value")

)
server <- function(input, output) {

output$value <- renderText({

134 plotOutput

req(input$go)
isolate(input$password)

})
}
shinyApp(ui, server)
}

plotOutput Create an plot or image output element

Description

Render a renderPlot() or renderImage() within an application page.

Usage

imageOutput(
outputId,
width = "100%",
height = "400px",
click = NULL,
dblclick = NULL,
hover = NULL,
brush = NULL,
inline = FALSE,
fill = FALSE

)

plotOutput(
outputId,
width = "100%",
height = "400px",
click = NULL,
dblclick = NULL,
hover = NULL,
brush = NULL,
inline = FALSE,
fill = !inline

)

Arguments

outputId output variable to read the plot/image from.

width, height Image width/height. Must be a valid CSS unit (like "100%", "400px", "auto")
or a number, which will be coerced to a string and have "px" appended. These
two arguments are ignored when inline = TRUE, in which case the width/height
of a plot must be specified in renderPlot(). Note that, for height, using "auto"

plotOutput 135

or "100%" generally will not work as expected, because of how height is com-
puted with HTML/CSS.

click This can be NULL (the default), a string, or an object created by the clickOpts()
function. If you use a value like "plot_click" (or equivalently, clickOpts(id="plot_click")),
the plot will send coordinates to the server whenever it is clicked, and the value
will be accessible via input$plot_click. The value will be a named list with
x and y elements indicating the mouse position.

dblclick This is just like the click argument, but for double-click events.

hover Similar to the click argument, this can be NULL (the default), a string, or an ob-
ject created by the hoverOpts() function. If you use a value like "plot_hover"
(or equivalently, hoverOpts(id="plot_hover")), the plot will send coordi-
nates to the server pauses on the plot, and the value will be accessible via
input$plot_hover. The value will be a named list with x and y elements in-
dicating the mouse position. To control the hover time or hover delay type, you
must use hoverOpts().

brush Similar to the click argument, this can be NULL (the default), a string, or an ob-
ject created by the brushOpts() function. If you use a value like "plot_brush"
(or equivalently, brushOpts(id="plot_brush")), the plot will allow the user
to "brush" in the plotting area, and will send information about the brushed area
to the server, and the value will be accessible via input$plot_brush. Brush-
ing means that the user will be able to draw a rectangle in the plotting area
and drag it around. The value will be a named list with xmin, xmax, ymin, and
ymax elements indicating the brush area. To control the brush behavior, use
brushOpts(). Multiple imageOutput/plotOutput calls may share the same id
value; brushing one image or plot will cause any other brushes with the same id
to disappear.

inline use an inline (span()) or block container (div()) for the output

fill Whether or not the returned tag should be treated as a fill item, meaning that its
height is allowed to grow/shrink to fit a fill container with an opinionated height
(see htmltools::bindFillRole()) with an opinionated height. Examples of
fill containers include bslib::card() and bslib::card_body_fill().

Value

A plot or image output element that can be included in a panel.

Interactive plots

Plots and images in Shiny support mouse-based interaction, via clicking, double-clicking, hovering,
and brushing. When these interaction events occur, the mouse coordinates will be sent to the server
as input$ variables, as specified by click, dblclick, hover, or brush.

For plotOutput, the coordinates will be sent scaled to the data space, if possible. (At the moment,
plots generated by base graphics and ggplot2 support this scaling, although plots generated by
lattice and others do not.) If scaling is not possible, the raw pixel coordinates will be sent. For
imageOutput, the coordinates will be sent in raw pixel coordinates.

136 plotOutput

With ggplot2 graphics, the code in renderPlot should return a ggplot object; if instead the code
prints the ggplot2 object with something like print(p), then the coordinates for interactive graphics
will not be properly scaled to the data space.

Note

The arguments clickId and hoverId only work for R base graphics (see the graphics package).
They do not work for grid-based graphics, such as ggplot2, lattice, and so on.

See Also

For the corresponding server-side functions, see renderPlot() and renderImage().

Examples

Only run these examples in interactive R sessions
if (interactive()) {

A basic shiny app with a plotOutput
shinyApp(

ui = fluidPage(
sidebarLayout(

sidebarPanel(
actionButton("newplot", "New plot")

),
mainPanel(

plotOutput("plot")
)

)
),
server = function(input, output) {

output$plot <- renderPlot({
input$newplot
Add a little noise to the cars data
cars2 <- cars + rnorm(nrow(cars))
plot(cars2)

})
}

)

A demonstration of clicking, hovering, and brushing
shinyApp(

ui = basicPage(
fluidRow(

column(width = 4,
plotOutput("plot", height=300,

click = "plot_click", # Equiv, to click=clickOpts(id="plot_click")
hover = hoverOpts(id = "plot_hover", delayType = "throttle"),
brush = brushOpts(id = "plot_brush")

),
h4("Clicked points"),

plotOutput 137

tableOutput("plot_clickedpoints"),
h4("Brushed points"),
tableOutput("plot_brushedpoints")

),
column(width = 4,

verbatimTextOutput("plot_clickinfo"),
verbatimTextOutput("plot_hoverinfo")

),
column(width = 4,

wellPanel(actionButton("newplot", "New plot")),
verbatimTextOutput("plot_brushinfo")

)
)

),
server = function(input, output, session) {

data <- reactive({
input$newplot
Add a little noise to the cars data so the points move
cars + rnorm(nrow(cars))

})
output$plot <- renderPlot({

d <- data()
plot(d$speed, d$dist)

})
output$plot_clickinfo <- renderPrint({

cat("Click:\n")
str(input$plot_click)

})
output$plot_hoverinfo <- renderPrint({

cat("Hover (throttled):\n")
str(input$plot_hover)

})
output$plot_brushinfo <- renderPrint({

cat("Brush (debounced):\n")
str(input$plot_brush)

})
output$plot_clickedpoints <- renderTable({

For base graphics, we need to specify columns, though for ggplot2,
it's usually not necessary.
res <- nearPoints(data(), input$plot_click, "speed", "dist")
if (nrow(res) == 0)

return()
res

})
output$plot_brushedpoints <- renderTable({

res <- brushedPoints(data(), input$plot_brush, "speed", "dist")
if (nrow(res) == 0)

return()
res

})
}

)

138 plotOutput

Demo of clicking, hovering, brushing with imageOutput
Note that coordinates are in pixels
shinyApp(

ui = basicPage(
fluidRow(

column(width = 4,
imageOutput("image", height=300,

click = "image_click",
hover = hoverOpts(

id = "image_hover",
delay = 500,
delayType = "throttle"

),
brush = brushOpts(id = "image_brush")

)
),
column(width = 4,

verbatimTextOutput("image_clickinfo"),
verbatimTextOutput("image_hoverinfo")

),
column(width = 4,

wellPanel(actionButton("newimage", "New image")),
verbatimTextOutput("image_brushinfo")

)
)

),
server = function(input, output, session) {

output$image <- renderImage({
input$newimage

Get width and height of image output
width <- session$clientData$output_image_width
height <- session$clientData$output_image_height

Write to a temporary PNG file
outfile <- tempfile(fileext = ".png")

png(outfile, width=width, height=height)
plot(rnorm(200), rnorm(200))
dev.off()

Return a list containing information about the image
list(

src = outfile,
contentType = "image/png",
width = width,
height = height,
alt = "This is alternate text"

)
})
output$image_clickinfo <- renderPrint({

cat("Click:\n")

plotPNG 139

str(input$image_click)
})
output$image_hoverinfo <- renderPrint({

cat("Hover (throttled):\n")
str(input$image_hover)

})
output$image_brushinfo <- renderPrint({

cat("Brush (debounced):\n")
str(input$image_brush)

})
}

)

}

plotPNG Capture a plot as a PNG file.

Description

The PNG graphics device used is determined in the following order:

• If the ragg package is installed (and the shiny.useragg is not set to FALSE), then use ragg::agg_png().

• If a quartz device is available (i.e., capabilities("aqua") is TRUE), then use png(type =
"quartz").

• If the Cairo package is installed (and the shiny.usecairo option is not set to FALSE), then
use Cairo::CairoPNG().

• Otherwise, use grDevices::png(). In this case, Linux and Windows may not antialias some
point shapes, resulting in poor quality output.

Usage

plotPNG(
func,
filename = tempfile(fileext = ".png"),
width = 400,
height = 400,
res = 72,
...

)

Arguments

func A function that generates a plot.

filename The name of the output file. Defaults to a temp file with extension .png.

width Width in pixels.

height Height in pixels.

140 Progress

res Resolution in pixels per inch. This value is passed to the graphics device. Note
that this affects the resolution of PNG rendering in R; it won’t change the actual
ppi of the browser.

... Arguments to be passed through to the graphics device. These can be used to set
the width, height, background color, etc.

Details

A NULL value provided to width or height is ignored (i.e., the default width or height of the
graphics device is used).

Value

A path to the newly generated PNG file.

Progress Reporting progress (object-oriented API)

Description

Reporting progress (object-oriented API)

Reporting progress (object-oriented API)

Details

Reports progress to the user during long-running operations.

This package exposes two distinct programming APIs for working with progress. withProgress()
and setProgress() together provide a simple function-based interface, while the Progress refer-
ence class provides an object-oriented API.

Instantiating a Progress object causes a progress panel to be created, and it will be displayed the
first time the set method is called. Calling close will cause the progress panel to be removed.

As of version 0.14, the progress indicators use Shiny’s new notification API. If you want to use the
old styling (for example, you may have used customized CSS), you can use style="old" each time
you call Progress$new(). If you don’t want to set the style each time Progress$new is called, you
can instead call shinyOptions(progress.style="old") just once, inside the server function.

Methods

Public methods:
• Progress$new()

• Progress$set()

• Progress$inc()

• Progress$getMin()

• Progress$getMax()

• Progress$getValue()

Progress 141

• Progress$close()

• Progress$clone()

Method new(): Creates a new progress panel (but does not display it).

Usage:
Progress$new(
session = getDefaultReactiveDomain(),
min = 0,
max = 1,
style = getShinyOption("progress.style", default = "notification")

)

Arguments:
session The Shiny session object, as provided by shinyServer to the server function.
min The value that represents the starting point of the progress bar. Must be less than max.
max The value that represents the end of the progress bar. Must be greater than min.
style Progress display style. If "notification" (the default), the progress indicator will

show using Shiny’s notification API. If "old", use the same HTML and CSS used in Shiny
0.13.2 and below (this is for backward-compatibility).

Method set(): Updates the progress panel. When called the first time, the progress panel is
displayed.

Usage:
Progress$set(value = NULL, message = NULL, detail = NULL)

Arguments:
value Single-element numeric vector; the value at which to set the progress bar, relative to min

and max. NULL hides the progress bar, if it is currently visible.
message A single-element character vector; the message to be displayed to the user, or NULL to

hide the current message (if any).
detail A single-element character vector; the detail message to be displayed to the user, or

NULL to hide the current detail message (if any). The detail message will be shown with a
de-emphasized appearance relative to message.

Method inc(): Like set, this updates the progress panel. The difference is that inc increases
the progress bar by amount, instead of setting it to a specific value.

Usage:
Progress$inc(amount = 0.1, message = NULL, detail = NULL)

Arguments:
amount For the inc() method, a numeric value to increment the progress bar.
message A single-element character vector; the message to be displayed to the user, or NULL to

hide the current message (if any).
detail A single-element character vector; the detail message to be displayed to the user, or

NULL to hide the current detail message (if any). The detail message will be shown with a
de-emphasized appearance relative to message.

Method getMin(): Returns the minimum value.

142 Progress

Usage:
Progress$getMin()

Method getMax(): Returns the maximum value.

Usage:
Progress$getMax()

Method getValue(): Returns the current value.

Usage:
Progress$getValue()

Method close(): Removes the progress panel. Future calls to set and close will be ignored.

Usage:
Progress$close()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Progress$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

withProgress()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
plotOutput("plot")

)

server <- function(input, output, session) {
output$plot <- renderPlot({
progress <- Progress$new(session, min=1, max=15)
on.exit(progress$close())

progress$set(message = 'Calculation in progress',
detail = 'This may take a while...')

for (i in 1:15) {
progress$set(value = i)
Sys.sleep(0.5)

}
plot(cars)

})
}

radioButtons 143

shinyApp(ui, server)
}

radioButtons Create radio buttons

Description

Create a set of radio buttons used to select an item from a list.

Usage

radioButtons(
inputId,
label,
choices = NULL,
selected = NULL,
inline = FALSE,
width = NULL,
choiceNames = NULL,
choiceValues = NULL

)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to select from (if elements of the list are named then that name
rather than the value is displayed to the user). If this argument is provided, then
choiceNames and choiceValues must not be provided, and vice-versa. The
values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

selected The initially selected value. If not specified, then it defaults to the first item in
choices. To start with no items selected, use character(0).

inline If TRUE, render the choices inline (i.e. horizontally)

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().
choiceNames, choiceValues

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

144 radioButtons

Details

If you need to represent a "None selected" state, it’s possible to default the radio buttons to have
no options selected by using selected = character(0). However, this is not recommended, as it
gives the user no way to return to that state once they’ve made a selection. Instead, consider having
the first of your choices be c("None selected" = "").

Value

A set of radio buttons that can be added to a UI definition.

Server value

A character string containing the value of the selected button.

See Also

updateRadioButtons()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), selectInput(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
radioButtons("dist", "Distribution type:",

c("Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm",
"Exponential" = "exp")),

plotOutput("distPlot")
)

server <- function(input, output) {
output$distPlot <- renderPlot({
dist <- switch(input$dist,

norm = rnorm,
unif = runif,
lnorm = rlnorm,
exp = rexp,
rnorm)

hist(dist(500))
})

}

shinyApp(ui, server)

ui <- fluidPage(

reactive 145

radioButtons("rb", "Choose one:",
choiceNames = list(

icon("calendar"),
HTML("<p style='color:red;'>Red Text</p>"),
"Normal text"

),
choiceValues = list(

"icon", "html", "text"
)),

textOutput("txt")
)

server <- function(input, output) {
output$txt <- renderText({
paste("You chose", input$rb)

})
}

shinyApp(ui, server)
}

reactive Create a reactive expression

Description

Wraps a normal expression to create a reactive expression. Conceptually, a reactive expression is a
expression whose result will change over time.

Usage

reactive(
x,
env = parent.frame(),
quoted = FALSE,
...,
label = NULL,
domain = getDefaultReactiveDomain(),
..stacktraceon = TRUE

)

is.reactive(x)

Arguments

x For is.reactive(), an object to test. For reactive(), an expression. When
passing in a rlang::quo()sure with reactive(), remember to use rlang::inject()
to distinguish that you are passing in the content of your quosure, not the expres-
sion of the quosure.

146 reactive

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
x is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of x will be used when x is evaluated. If
x is a quosure and you would like to use its expression as a value for x, then you
must set quoted to TRUE.

... Not used.

label A label for the reactive expression, useful for debugging.

domain See domains.

..stacktraceon Advanced use only. For stack manipulation purposes; see stacktrace().

Details

Reactive expressions are expressions that can read reactive values and call other reactive expres-
sions. Whenever a reactive value changes, any reactive expressions that depended on it are marked
as "invalidated" and will automatically re-execute if necessary. If a reactive expression is marked
as invalidated, any other reactive expressions that recently called it are also marked as invalidated.
In this way, invalidations ripple through the expressions that depend on each other.

See the Shiny tutorial for more information about reactive expressions.

Value

a function, wrapped in a S3 class "reactive"

Examples

library(rlang)
values <- reactiveValues(A=1)

reactiveB <- reactive({
values$A + 1

})
View the values from the R console with isolate()
isolate(reactiveB())
2

To store expressions for later conversion to reactive, use quote()
myquo <- rlang::quo(values$A + 2)
Unexpected value! Sending a quosure directly will not work as expected.
reactiveC <- reactive(myquo)
We'd hope for `3`, but instead we get the quosure that was supplied.
isolate(reactiveC())

Instead, the quosure should be `rlang::inject()`ed
reactiveD <- rlang::inject(reactive(!!myquo))
isolate(reactiveD())
3

(Legacy) Can use quoted expressions

https://shiny.rstudio.com/tutorial/

reactiveFileReader 147

expr <- quote({ values$A + 3 })
reactiveE <- reactive(expr, quoted = TRUE)
isolate(reactiveE())
4

reactiveFileReader Reactive file reader

Description

Given a file path and read function, returns a reactive data source for the contents of the file.

Usage

reactiveFileReader(intervalMillis, session, filePath, readFunc, ...)

Arguments

intervalMillis Approximate number of milliseconds to wait between checks of the file’s last
modified time. This can be a numeric value, or a function that returns a numeric
value.

session The user session to associate this file reader with, or NULL if none. If non-null,
the reader will automatically stop when the session ends.

filePath The file path to poll against and to pass to readFunc. This can either be a single-
element character vector, or a function that returns one.

readFunc The function to use to read the file; must expect the first argument to be the file
path to read. The return value of this function is used as the value of the reactive
file reader.

... Any additional arguments to pass to readFunc whenever it is invoked.

Details

reactiveFileReader works by periodically checking the file’s last modified time; if it has changed,
then the file is re-read and any reactive dependents are invalidated.

The intervalMillis, filePath, and readFunc functions will each be executed in a reactive con-
text; therefore, they may read reactive values and reactive expressions.

Value

A reactive expression that returns the contents of the file, and automatically invalidates when the
file changes on disk (as determined by last modified time).

See Also

reactivePoll()

148 reactivePoll

Examples

Not run:
Per-session reactive file reader
function(input, output, session) {

fileData <- reactiveFileReader(1000, session, 'data.csv', read.csv)

output$data <- renderTable({
fileData()

})
}

Cross-session reactive file reader. In this example, all sessions share
the same reader, so read.csv only gets executed once no matter how many
user sessions are connected.
fileData <- reactiveFileReader(1000, NULL, 'data.csv', read.csv)
function(input, output, session) {

output$data <- renderTable({
fileData()

})
}

End(Not run)

reactivePoll Reactive polling

Description

Used to create a reactive data source, which works by periodically polling a non-reactive data
source.

Usage

reactivePoll(intervalMillis, session, checkFunc, valueFunc)

Arguments

intervalMillis Approximate number of milliseconds to wait between calls to checkFunc. This
can be either a numeric value, or a function that returns a numeric value.

session The user session to associate this file reader with, or NULL if none. If non-null,
the reader will automatically stop when the session ends.

checkFunc A relatively cheap function whose values over time will be tested for equality;
inequality indicates that the underlying value has changed and needs to be inval-
idated and re-read using valueFunc. See Details.

valueFunc A function that calculates the underlying value. See Details.

reactivePoll 149

Details

reactivePoll works by pairing a relatively cheap "check" function with a more expensive value
retrieval function. The check function will be executed periodically and should always return a
consistent value until the data changes. When the check function returns a different value, then the
value retrieval function will be used to re-populate the data.

Note that the check function doesn’t return TRUE or FALSE to indicate whether the underlying data
has changed. Rather, the check function indicates change by returning a different value from the
previous time it was called.

For example, reactivePoll is used to implement reactiveFileReader by pairing a check func-
tion that simply returns the last modified timestamp of a file, and a value retrieval function that
actually reads the contents of the file.

As another example, one might read a relational database table reactively by using a check func-
tion that does SELECT MAX(timestamp) FROM table and a value retrieval function that does
SELECT * FROM table.

The intervalMillis, checkFunc, and valueFunc functions will be executed in a reactive context;
therefore, they may read reactive values and reactive expressions.

Value

A reactive expression that returns the result of valueFunc, and invalidates when checkFunc changes.

See Also

reactiveFileReader()

Examples

function(input, output, session) {

data <- reactivePoll(1000, session,
This function returns the time that log_file was last modified
checkFunc = function() {

if (file.exists(log_file))
file.info(log_file)$mtime[1]

else
""

},
This function returns the content of log_file
valueFunc = function() {

read.csv(log_file)
}

)

output$dataTable <- renderTable({
data()

})
}

150 reactiveTimer

reactiveTimer Timer

Description

Creates a reactive timer with the given interval. A reactive timer is like a reactive value, except
reactive values are triggered when they are set, while reactive timers are triggered simply by the
passage of time.

Usage

reactiveTimer(intervalMs = 1000, session = getDefaultReactiveDomain())

Arguments

intervalMs How often to fire, in milliseconds

session A session object. This is needed to cancel any scheduled invalidations after a
user has ended the session. If NULL, then this invalidation will not be tied to any
session, and so it will still occur.

Details

Reactive expressions and observers that want to be invalidated by the timer need to call the timer
function that reactiveTimer returns, even if the current time value is not actually needed.

See invalidateLater() as a safer and simpler alternative.

Value

A no-parameter function that can be called from a reactive context, in order to cause that context to
be invalidated the next time the timer interval elapses. Calling the returned function also happens
to yield the current time (as in base::Sys.time()).

See Also

invalidateLater()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("n", "Number of observations", 2, 1000, 500),
plotOutput("plot")

)

server <- function(input, output) {

reactiveVal 151

Anything that calls autoInvalidate will automatically invalidate
every 2 seconds.
autoInvalidate <- reactiveTimer(2000)

observe({
Invalidate and re-execute this reactive expression every time the
timer fires.
autoInvalidate()

Do something each time this is invalidated.
The isolate() makes this observer _not_ get invalidated and re-executed
when input$n changes.
print(paste("The value of input$n is", isolate(input$n)))

})

Generate a new histogram each time the timer fires, but not when
input$n changes.
output$plot <- renderPlot({

autoInvalidate()
hist(rnorm(isolate(input$n)))

})
}

shinyApp(ui, server)
}

reactiveVal Create a (single) reactive value

Description

The reactiveVal function is used to construct a "reactive value" object. This is an object used for
reading and writing a value, like a variable, but with special capabilities for reactive programming.
When you read the value out of a reactiveVal object, the calling reactive expression takes a depen-
dency, and when you change the value, it notifies any reactives that previously depended on that
value.

Usage

reactiveVal(value = NULL, label = NULL)

Arguments

value An optional initial value.

label An optional label, for debugging purposes (see reactlog()). If missing, a label
will be automatically created.

152 reactiveVal

Details

reactiveVal is very similar to reactiveValues(), except that the former is for a single reactive
value (like a variable), whereas the latter lets you conveniently use multiple reactive values by name
(like a named list of variables). For a one-off reactive value, it’s more natural to use reactiveVal.
See the Examples section for an illustration.

Value

A function. Call the function with no arguments to (reactively) read the value; call the function with
a single argument to set the value.

Examples

Not run:

Create the object by calling reactiveVal
r <- reactiveVal()

Set the value by calling with an argument
r(10)

Read the value by calling without arguments
r()

End(Not run)

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
actionButton("minus", "-1"),
actionButton("plus", "+1"),
br(),
textOutput("value")

)

The comments below show the equivalent logic using reactiveValues()
server <- function(input, output, session) {

value <- reactiveVal(0) # rv <- reactiveValues(value = 0)

observeEvent(input$minus, {
newValue <- value() - 1 # newValue <- rv$value - 1
value(newValue) # rv$value <- newValue

})

observeEvent(input$plus, {
newValue <- value() + 1 # newValue <- rv$value + 1
value(newValue) # rv$value <- newValue

})

output$value <- renderText({

reactiveValues 153

value() # rv$value
})

}

shinyApp(ui, server)

}

reactiveValues Create an object for storing reactive values

Description

This function returns an object for storing reactive values. It is similar to a list, but with special ca-
pabilities for reactive programming. When you read a value from it, the calling reactive expression
takes a reactive dependency on that value, and when you write to it, it notifies any reactive functions
that depend on that value. Note that values taken from the reactiveValues object are reactive, but
the reactiveValues object itself is not.

Usage

reactiveValues(...)

Arguments

... Objects that will be added to the reactivevalues object. All of these objects must
be named.

See Also

isolate() and is.reactivevalues().

Examples

Create the object with no values
values <- reactiveValues()

Assign values to 'a' and 'b'
values$a <- 3
values[['b']] <- 4

Not run:
From within a reactive context, you can access values with:
values$a
values[['a']]

End(Not run)

154 reactiveValuesToList

If not in a reactive context (e.g., at the console), you can use isolate()
to retrieve the value:
isolate(values$a)
isolate(values[['a']])

Set values upon creation
values <- reactiveValues(a = 1, b = 2)
isolate(values$a)

reactiveValuesToList Convert a reactivevalues object to a list

Description

This function does something similar to what you might want or expect base::as.list() to do.
The difference is that the calling context will take dependencies on every object in the reactivevalues
object. To avoid taking dependencies on all the objects, you can wrap the call with isolate().

Usage

reactiveValuesToList(x, all.names = FALSE)

Arguments

x A reactivevalues object.

all.names If TRUE, include objects with a leading dot. If FALSE (the default) don’t include
those objects.

Examples

values <- reactiveValues(a = 1)
Not run:
reactiveValuesToList(values)

End(Not run)

To get the objects without taking dependencies on them, use isolate().
isolate() can also be used when calling from outside a reactive context (e.g.
at the console)
isolate(reactiveValuesToList(values))

reactlog 155

reactlog Reactive Log Visualizer

Description

Provides an interactive browser-based tool for visualizing reactive dependencies and execution in
your application.

Usage

reactlog()

reactlogShow(time = TRUE)

reactlogReset()

reactlogAddMark(session = getDefaultReactiveDomain())

Arguments

time A boolean that specifies whether or not to display the time that each reactive
takes to calculate a result.

session The Shiny session to assign the mark to. Defaults to the current session.

Details

To use the reactive log visualizer, start with a fresh R session and run the command reactlog::reactlog_enable();
then launch your application in the usual way (e.g. using runApp()). At any time you can hit
Ctrl+F3 (or for Mac users, Command+F3) in your web browser to launch the reactive log visual-
ization.

The reactive log visualization only includes reactive activity up until the time the report was loaded.
If you want to see more recent activity, refresh the browser.

Note that Shiny does not distinguish between reactive dependencies that "belong" to one Shiny user
session versus another, so the visualization will include all reactive activity that has taken place in
the process, not just for a particular application or session.

As an alternative to pressing Ctrl/Command+F3–for example, if you are using reactives outside
of the context of a Shiny application–you can run the reactlogShow function, which will gener-
ate the reactive log visualization as a static HTML file and launch it in your default browser. In
this case, refreshing your browser will not load new activity into the report; you will need to call
reactlogShow() explicitly.

For security and performance reasons, do not enable options(shiny.reactlog=TRUE) (or reactlog::reactlog_enable())
in production environments. When the option is enabled, it’s possible for any user of your app to
see at least some of the source code of your reactive expressions and observers. In addition, react-
log should be considered a memory leak as it will constantly grow and will never reset until the R
session is restarted.

156 registerInputHandler

Functions

• reactlog(): Return a list of reactive information. Can be used in conjunction with react-
log::reactlog_show to later display the reactlog graph.

• reactlogShow(): Display a full reactlog graph for all sessions.

• reactlogReset(): Resets the entire reactlog stack. Useful for debugging and removing all
prior reactive history.

• reactlogAddMark(): Adds "mark" entry into the reactlog stack. This is useful for program-
matically adding a marked entry in the reactlog, rather than using your keyboard’s key com-
bination.
For example, we can mark the reactlog at the beginning of an observeEvent’s calculation:

observeEvent(input$my_event_trigger, {
Add a mark in the reactlog
reactlogAddMark()
Run your regular event reaction code here...
....

})

registerInputHandler Register an Input Handler

Description

Adds an input handler for data of this type. When called, Shiny will use the function provided to
refine the data passed back from the client (after being deserialized by jsonlite) before making it
available in the input variable of the server.R file.

Usage

registerInputHandler(type, fun, force = FALSE)

Arguments

type The type for which the handler should be added — should be a single-element
character vector.

fun The handler function. This is the function that will be used to parse the data de-
livered from the client before it is available in the input variable. The function
will be called with the following three parameters:

1. The value of this input as provided by the client, deserialized using jsonlite.
2. The shinysession in which the input exists.
3. The name of the input.

force If TRUE, will overwrite any existing handler without warning. If FALSE, will
throw an error if this class already has a handler defined.

removeInputHandler 157

Details

This function will register the handler for the duration of the R process (unless Shiny is explicitly
reloaded). For that reason, the type used should be very specific to this package to minimize the
risk of colliding with another Shiny package which might use this data type name. We recommend
the format of "packageName.widgetName". It should be called from the package’s .onLoad()
function.

Currently Shiny registers the following handlers: shiny.matrix, shiny.number, and shiny.date.

The type of a custom Shiny Input widget will be deduced using the getType() JavaScript function
on the registered Shiny inputBinding.

See Also

removeInputHandler() applyInputHandlers()

Examples

Not run:
Register an input handler which rounds a input number to the nearest integer
In a package, this should be called from the .onLoad function.
registerInputHandler("mypackage.validint", function(x, shinysession, name) {

if (is.null(x)) return(NA)
round(x)

})

On the Javascript side, the associated input binding must have a corresponding getType method:
getType: function(el) {
return "mypackage.validint";
}

End(Not run)

removeInputHandler Deregister an Input Handler

Description

Removes an Input Handler. Rather than using the previously specified handler for data of this type,
the default jsonlite serialization will be used.

Usage

removeInputHandler(type)

Arguments

type The type for which handlers should be removed.

158 renderCachedPlot

Value

The handler previously associated with this type, if one existed. Otherwise, NULL.

See Also

registerInputHandler()

renderCachedPlot Plot output with cached images

Description

Renders a reactive plot, with plot images cached to disk. As of Shiny 1.6.0, this is a shortcut for
using bindCache() with renderPlot().

Usage

renderCachedPlot(
expr,
cacheKeyExpr,
sizePolicy = sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2),
res = 72,
cache = "app",
...,
alt = "Plot object",
outputArgs = list(),
width = NULL,
height = NULL

)

Arguments

expr An expression that generates a plot.

cacheKeyExpr An expression that returns a cache key. This key should be a unique identifier
for a plot: the assumption is that if the cache key is the same, then the plot will
be the same.

sizePolicy A function that takes two arguments, width and height, and returns a list with
width and height. The purpose is to round the actual pixel dimensions from
the browser to some other dimensions, so that this will not generate and cache
images of every possible pixel dimension. See sizeGrowthRatio() for more
information on the default sizing policy.

res The resolution of the PNG, in pixels per inch.

cache The scope of the cache, or a cache object. This can be "app" (the default),
"session", or a cache object like a cachem::cache_disk(). See the Cache
Scoping section for more information.

renderCachedPlot 159

... Arguments to be passed through to plotPNG(). These can be used to set the
width, height, background color, etc.

alt Alternate text for the HTML tag if it cannot be displayed or viewed (i.e.,
the user uses a screen reader). In addition to a character string, the value may
be a reactive expression (or a function referencing reactive values) that returns a
character string. If the value is NA (the default), then ggplot2::get_alt_text()
is used to extract alt text from ggplot objects; for other plots, NA results in alt
text of "Plot object". NULL or "" is not recommended because those should be
limited to decorative images.

outputArgs A list of arguments to be passed through to the implicit call to plotOutput()
when renderPlot is used in an interactive R Markdown document.

width, height not used. They are specified via the argument sizePolicy.

Details

expr is an expression that generates a plot, similar to that in renderPlot. Unlike with renderPlot,
this expression does not take reactive dependencies. It is re-executed only when the cache key
changes.

cacheKeyExpr is an expression which, when evaluated, returns an object which will be serialized
and hashed using the rlang::hash() function to generate a string that will be used as a cache key.
This key is used to identify the contents of the plot: if the cache key is the same as a previous time,
it assumes that the plot is the same and can be retrieved from the cache.

This cacheKeyExpr is reactive, and so it will be re-evaluated when any upstream reactives are
invalidated. This will also trigger re-execution of the plotting expression, expr.

The key should consist of "normal" R objects, like vectors and lists. Lists should in turn contain
other normal R objects. If the key contains environments, external pointers, or reference objects
— or even if it has such objects attached as attributes — then it is possible that it will change
unpredictably even when you do not expect it to. Additionally, because the entire key is serialized
and hashed, if it contains a very large object — a large data set, for example — there may be a
noticeable performance penalty.

If you face these issues with the cache key, you can work around them by extracting out the impor-
tant parts of the objects, and/or by converting them to normal R objects before returning them. Your
expression could even serialize and hash that information in an efficient way and return a string,
which will in turn be hashed (very quickly) by the rlang::hash() function.

Internally, the result from cacheKeyExpr is combined with the name of the output (if you assign
it to output$plot1, it will be combined with "plot1") to form the actual key that is used. As a
result, even if there are multiple plots that have the same cacheKeyExpr, they will not have cache
key collisions.

Interactive plots

renderCachedPlot can be used to create interactive plots. See plotOutput() for more information
and examples.

160 renderCachedPlot

See Also

See renderPlot() for the regular, non-cached version of this function. It can be used with bindCache()
to get the same effect as renderCachedPlot(). For more about configuring caches, see cachem::cache_mem()
and cachem::cache_disk().

Examples

Only run examples in interactive R sessions
if (interactive()) {

A basic example that uses the default app-scoped memory cache.
The cache will be shared among all simultaneous users of the application.
shinyApp(

fluidPage(
sidebarLayout(

sidebarPanel(
sliderInput("n", "Number of points", 4, 32, value = 8, step = 4)

),
mainPanel(plotOutput("plot"))

)
),
function(input, output, session) {

output$plot <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
seqn <- seq_len(input$n)
plot(mtcars$wt[seqn], mtcars$mpg[seqn],

xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
},
cacheKeyExpr = { list(input$n) }

)
}

)

An example uses a data object shared across sessions. mydata() is part of
the cache key, so when its value changes, plots that were previously
stored in the cache will no longer be used (unless mydata() changes back
to its previous value).
mydata <- reactiveVal(data.frame(x = rnorm(400), y = rnorm(400)))

ui <- fluidPage(
sidebarLayout(

sidebarPanel(
sliderInput("n", "Number of points", 50, 400, 100, step = 50),
actionButton("newdata", "New data")

),
mainPanel(

plotOutput("plot")
)

)
)

renderCachedPlot 161

server <- function(input, output, session) {
observeEvent(input$newdata, {
mydata(data.frame(x = rnorm(400), y = rnorm(400)))

})

output$plot <- renderCachedPlot(
{

Sys.sleep(2)
d <- mydata()
seqn <- seq_len(input$n)
plot(d$x[seqn], d$y[seqn], xlim = range(d$x), ylim = range(d$y))

},
cacheKeyExpr = { list(input$n, mydata()) },

)
}

shinyApp(ui, server)

A basic application with two plots, where each plot in each session has
a separate cache.
shinyApp(

fluidPage(
sidebarLayout(

sidebarPanel(
sliderInput("n", "Number of points", 4, 32, value = 8, step = 4)

),
mainPanel(

plotOutput("plot1"),
plotOutput("plot2")

)
)

),
function(input, output, session) {

output$plot1 <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
seqn <- seq_len(input$n)
plot(mtcars$wt[seqn], mtcars$mpg[seqn],

xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
},
cacheKeyExpr = { list(input$n) },
cache = cachem::cache_mem()

)
output$plot2 <- renderCachedPlot({

Sys.sleep(2) # Add an artificial delay
seqn <- seq_len(input$n)
plot(mtcars$wt[seqn], mtcars$mpg[seqn],

xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
},
cacheKeyExpr = { list(input$n) },
cache = cachem::cache_mem()

)

162 renderImage

}
)

}

Not run:
At the top of app.R, this set the application-scoped cache to be a memory
cache that is 20 MB in size, and where cached objects expire after one
hour.
shinyOptions(cache = cachem::cache_mem(max_size = 20e6, max_age = 3600))

At the top of app.R, this set the application-scoped cache to be a disk
cache that can be shared among multiple concurrent R processes, and is
deleted when the system reboots.
shinyOptions(cache = cachem::cache_disk(file.path(dirname(tempdir()), "myapp-cache")))

At the top of app.R, this set the application-scoped cache to be a disk
cache that can be shared among multiple concurrent R processes, and
persists on disk across reboots.
shinyOptions(cache = cachem::cache_disk("./myapp-cache"))

At the top of the server function, this set the session-scoped cache to be
a memory cache that is 5 MB in size.
server <- function(input, output, session) {

shinyOptions(cache = cachem::cache_mem(max_size = 5e6))

output$plot <- renderCachedPlot(
...,
cache = "session"

)
}

End(Not run)

renderImage Image file output

Description

Renders a reactive image that is suitable for assigning to an output slot.

Usage

renderImage(
expr,
env = parent.frame(),
quoted = FALSE,
deleteFile,
outputArgs = list()

)

renderImage 163

Arguments

expr An expression that returns a list.

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
expr is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of expr will be used when expr is eval-
uated. If expr is a quosure and you would like to use its expression as a value
for expr, then you must set quoted to TRUE.

deleteFile Should the file in func()$src be deleted after it is sent to the client browser?
Generally speaking, if the image is a temp file generated within func, then this
should be TRUE; if the image is not a temp file, this should be FALSE. (For back-
ward compatibility reasons, if this argument is missing, a warning will be emit-
ted, and if the file is in the temp directory it will be deleted. In the future, this
warning will become an error.)

outputArgs A list of arguments to be passed through to the implicit call to imageOutput()
when renderImage is used in an interactive R Markdown document.

Details

The expression expr must return a list containing the attributes for the img object on the client web
page. For the image to display, properly, the list must have at least one entry, src, which is the
path to the image file. It may also useful to have a contentType entry specifying the MIME type
of the image. If one is not provided, renderImage will try to autodetect the type, based on the file
extension.

Other elements such as width, height, class, and alt, can also be added to the list, and they will
be used as attributes in the img object.

The corresponding HTML output tag should be div or img and have the CSS class name shiny-image-output.

See Also

For more details on how the images are generated, and how to control the output, see plotPNG().

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

ui <- fluidPage(
sliderInput("n", "Number of observations", 2, 1000, 500),
plotOutput("plot1"),
plotOutput("plot2"),
plotOutput("plot3")

)

server <- function(input, output, session) {

A plot of fixed size

164 renderImage

output$plot1 <- renderImage({
A temp file to save the output. It will be deleted after renderImage
sends it, because deleteFile=TRUE.
outfile <- tempfile(fileext='.png')

Generate a png
png(outfile, width=400, height=400)
hist(rnorm(input$n))
dev.off()

Return a list
list(src = outfile,

alt = "This is alternate text")
}, deleteFile = TRUE)

A dynamically-sized plot
output$plot2 <- renderImage({

Read plot2's width and height. These are reactive values, so this
expression will re-run whenever these values change.
width <- session$clientData$output_plot2_width
height <- session$clientData$output_plot2_height

A temp file to save the output.
outfile <- tempfile(fileext='.png')

png(outfile, width=width, height=height)
hist(rnorm(input$n))
dev.off()

Return a list containing the filename
list(src = outfile,

width = width,
height = height,
alt = "This is alternate text")

}, deleteFile = TRUE)

Send a pre-rendered image, and don't delete the image after sending it
NOTE: For this example to work, it would require files in a subdirectory
named images/
output$plot3 <- renderImage({

When input$n is 1, filename is ./images/image1.jpeg
filename <- normalizePath(file.path('./images',

paste('image', input$n, '.jpeg', sep='')))

Return a list containing the filename
list(src = filename)

}, deleteFile = FALSE)
}

shinyApp(ui, server)
}

renderPlot 165

renderPlot Plot Output

Description

Renders a reactive plot that is suitable for assigning to an output slot.

Usage

renderPlot(
expr,
width = "auto",
height = "auto",
res = 72,
...,
alt = NA,
env = parent.frame(),
quoted = FALSE,
execOnResize = FALSE,
outputArgs = list()

)

Arguments

expr An expression that generates a plot.
width, height Height and width can be specified in three ways:

• "auto", the default, uses the size specified by plotOutput() (i.e. the
offsetWidth/‘offsetHeight“ of the HTML element bound to this plot.)

• An integer, defining the width/height in pixels.
• A function that returns the width/height in pixels (or "auto"). The function

is executed in a reactive context so that you can refer to reactive values and
expression to make the width/height reactive.

When rendering an inline plot, you must provide numeric values (in pixels) to
both width and height.

res Resolution of resulting plot, in pixels per inch. This value is passed to plotPNG().
Note that this affects the resolution of PNG rendering in R; it won’t change the
actual ppi of the browser.

... Arguments to be passed through to plotPNG(). These can be used to set the
width, height, background color, etc.

alt Alternate text for the HTML tag if it cannot be displayed or viewed (i.e.,
the user uses a screen reader). In addition to a character string, the value may
be a reactive expression (or a function referencing reactive values) that returns a
character string. If the value is NA (the default), then ggplot2::get_alt_text()
is used to extract alt text from ggplot objects; for other plots, NA results in alt
text of "Plot object". NULL or "" is not recommended because those should be
limited to decorative images.

166 renderPrint

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
expr is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of expr will be used when expr is eval-
uated. If expr is a quosure and you would like to use its expression as a value
for expr, then you must set quoted to TRUE.

execOnResize If FALSE (the default), then when a plot is resized, Shiny will replay the plot
drawing commands with grDevices::replayPlot() instead of re-executing
expr. This can result in faster plot redrawing, but there may be rare cases where
it is undesirable. If you encounter problems when resizing a plot, you can have
Shiny re-execute the code on resize by setting this to TRUE.

outputArgs A list of arguments to be passed through to the implicit call to plotOutput()
when renderPlot is used in an interactive R Markdown document.

Details

The corresponding HTML output tag should be div or img and have the CSS class name shiny-plot-output.

Interactive plots

With ggplot2 graphics, the code in renderPlot should return a ggplot object; if instead the code
prints the ggplot2 object with something like print(p), then the coordinates for interactive graphics
will not be properly scaled to the data space.

See plotOutput() for more information about interactive plots.

See Also

For the corresponding client-side output function, and example usage, see plotOutput(). For more
details on how the plots are generated, and how to control the output, see plotPNG(). renderCachedPlot()
offers a way to cache generated plots to expedite the rendering of identical plots.

renderPrint Text Output

Description

renderPrint() prints the result of expr, while renderText() pastes it together into a single string.
renderPrint() is equivalent to print(); renderText() is equivalent to cat(). Both functions
capture all other printed output generated while evaluating expr.

renderPrint() is usually paired with verbatimTextOutput(); renderText() is usually paired
with textOutput().

renderPrint 167

Usage

renderPrint(
expr,
env = parent.frame(),
quoted = FALSE,
width = getOption("width"),
outputArgs = list()

)

renderText(
expr,
env = parent.frame(),
quoted = FALSE,
outputArgs = list(),
sep = " "

)

Arguments

expr An expression to evaluate.

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
expr is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of expr will be used when expr is eval-
uated. If expr is a quosure and you would like to use its expression as a value
for expr, then you must set quoted to TRUE.

width Width of printed output.

outputArgs A list of arguments to be passed through to the implicit call to verbatimTextOutput()
or textOutput() when the functions are used in an interactive RMarkdown
document.

sep A separator passed to cat to be appended after each element.

Details

The corresponding HTML output tag can be anything (though pre is recommended if you need a
monospace font and whitespace preserved) and should have the CSS class name shiny-text-output.

Value

For renderPrint(), note the given expression returns NULL then NULL will actually be visible in
the output. To display nothing, make your function return invisible().

Examples

isolate({

renderPrint captures any print output, converts it to a string, and
returns it

168 renderPrint

visFun <- renderPrint({ "foo" })
visFun()
'[1] "foo"'

invisFun <- renderPrint({ invisible("foo") })
invisFun()
''

multiprintFun <- renderPrint({
print("foo");
"bar"

})
multiprintFun()
'[1] "foo"\n[1] "bar"'

nullFun <- renderPrint({ NULL })
nullFun()
'NULL'

invisNullFun <- renderPrint({ invisible(NULL) })
invisNullFun()
''

vecFun <- renderPrint({ 1:5 })
vecFun()
'[1] 1 2 3 4 5'

Contrast with renderText, which takes the value returned from the function
and uses cat() to convert it to a string
visFun <- renderText({ "foo" })
visFun()
'foo'

invisFun <- renderText({ invisible("foo") })
invisFun()
'foo'

multiprintFun <- renderText({
print("foo");
"bar"

})
multiprintFun()
'bar'

nullFun <- renderText({ NULL })
nullFun()
''

invisNullFun <- renderText({ invisible(NULL) })
invisNullFun()
''

renderUI 169

vecFun <- renderText({ 1:5 })
vecFun()
'1 2 3 4 5'

})

renderUI UI Output

Description

Renders reactive HTML using the Shiny UI library.

Usage

renderUI(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())

Arguments

expr An expression that returns a Shiny tag object, HTML(), or a list of such objects.

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
expr is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of expr will be used when expr is eval-
uated. If expr is a quosure and you would like to use its expression as a value
for expr, then you must set quoted to TRUE.

outputArgs A list of arguments to be passed through to the implicit call to uiOutput() when
renderUI is used in an interactive R Markdown document.

Details

The corresponding HTML output tag should be div and have the CSS class name shiny-html-output
(or use uiOutput()).

See Also

uiOutput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
uiOutput("moreControls")

)

server <- function(input, output) {

170 repeatable

output$moreControls <- renderUI({
tagList(

sliderInput("n", "N", 1, 1000, 500),
textInput("label", "Label")

)
})

}
shinyApp(ui, server)
}

repeatable Make a random number generator repeatable

Description

Given a function that generates random data, returns a wrapped version of that function that always
uses the same seed when called. The seed to use can be passed in explicitly if desired; otherwise, a
random number is used.

Usage

repeatable(rngfunc, seed = stats::runif(1, 0, .Machine$integer.max))

Arguments

rngfunc The function that is affected by the R session’s seed.

seed The seed to set every time the resulting function is called.

Value

A repeatable version of the function that was passed in.

Note

When called, the returned function attempts to preserve the R session’s current seed by snapshotting
and restoring base::.Random.seed().

Examples

rnormA <- repeatable(rnorm)
rnormB <- repeatable(rnorm)
rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111
rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111
rnormA(5) # [1] 1.8285879 -0.7468041 -0.4639111 -1.6510126 -1.4686924
rnormB(5) # [1] -0.7946034 0.2568374 -0.6567597 1.2451387 -0.8375699

req 171

req Check for required values

Description

Ensure that values are available ("truthy") before proceeding with a calculation or action. If any of
the given values is not truthy, the operation is stopped by raising a "silent" exception (not logged by
Shiny, nor displayed in the Shiny app’s UI).

Usage

req(..., cancelOutput = FALSE)

Arguments

... Values to check for truthiness.
cancelOutput If TRUE and an output is being evaluated, stop processing as usual but instead of

clearing the output, leave it in whatever state it happens to be in. If "progress",
do the same as TRUE, but also keep the output in recalculating state; this is in-
tended for cases when an in-progress calculation will not be completed in this
reactive flush cycle, but is still expected to provide a result in the future.

Details

The req function was designed to be used in one of two ways. The first is to call it like a statement
(ignoring its return value) before attempting operations using the required values:

rv <- reactiveValues(state = FALSE)
r <- reactive({
req(input$a, input$b, rv$state)
Code that uses input$a, input$b, and/or rv$state...

})

In this example, if r() is called and any of input$a, input$b, and rv$state are NULL, FALSE, "",
etc., then the req call will trigger an error that propagates all the way up to whatever render block
or observer is executing.

The second is to use it to wrap an expression that must be truthy:

output$plot <- renderPlot({
if (req(input$plotType) == "histogram") {
hist(dataset())

} else if (input$plotType == "scatter") {
qplot(dataset(), aes(x = x, y = y))

}
})

In this example, req(input$plotType) first checks that input$plotType is truthy, and if so, re-
turns it. This is a convenient way to check for a value "inline" with its first use.

172 req

Value

The first value that was passed in.

Using req(FALSE)

You can use req(FALSE) (i.e. no condition) if you’ve already performed all the checks you needed
to by that point and just want to stop the reactive chain now. There is no advantage to this, except
perhaps ease of readability if you have a complicated condition to check for (or perhaps if you’d
like to divide your condition into nested if statements).

Using cancelOutput = TRUE

When req(..., cancelOutput = TRUE) is used, the "silent" exception is also raised, but it is
treated slightly differently if one or more outputs are currently being evaluated. In those cases,
the reactive chain does not proceed or update, but the output(s) are left is whatever state they hap-
pen to be in (whatever was their last valid state).

Note that this is always going to be the case if this is used inside an output context (e.g. output$txt
<- ...). It may or may not be the case if it is used inside a non-output context (e.g. reactive(),
observe() or observeEvent()) — depending on whether or not there is an output$... that is
triggered as a result of those calls. See the examples below for concrete scenarios.

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
textInput('data', 'Enter a dataset from the "datasets" package', 'cars'),
p('(E.g. "cars", "mtcars", "pressure", "faithful")'), hr(),
tableOutput('tbl')

)

server <- function(input, output) {
output$tbl <- renderTable({

to require that the user types something, use: `req(input$data)`
but better: require that input$data is valid and leave the last
valid table up
req(exists(input$data, "package:datasets", inherits = FALSE),

cancelOutput = TRUE)

head(get(input$data, "package:datasets", inherits = FALSE))
})

}

shinyApp(ui, server)
}

restoreInput 173

restoreInput Restore an input value

Description

This restores an input value from the current restore context. It should be called early on inside of
input functions (like textInput()).

Usage

restoreInput(id, default)

Arguments

id Name of the input value to restore.

default A default value to use, if there’s no value to restore.

runApp Run Shiny Application

Description

Runs a Shiny application. This function normally does not return; interrupt R to stop the application
(usually by pressing Ctrl+C or Esc).

Usage

runApp(
appDir = getwd(),
port = getOption("shiny.port"),
launch.browser = getOption("shiny.launch.browser", interactive()),
host = getOption("shiny.host", "127.0.0.1"),
workerId = "",
quiet = FALSE,
display.mode = c("auto", "normal", "showcase"),
test.mode = getOption("shiny.testmode", FALSE)

)

Arguments

appDir The application to run. Should be one of the following:

• A directory containing server.R, plus, either ui.R or a www directory that
contains the file index.html.

• A directory containing app.R.

174 runApp

• An .R file containing a Shiny application, ending with an expression that
produces a Shiny app object.

• A list with ui and server components.
• A Shiny app object created by shinyApp().

port The TCP port that the application should listen on. If the port is not specified,
and the shiny.port option is set (with options(shiny.port = XX)), then that
port will be used. Otherwise, use a random port between 3000:8000, excluding
ports that are blocked by Google Chrome for being considered unsafe: 3659,
4045, 5060, 5061, 6000, 6566, 6665:6669 and 6697. Up to twenty random ports
will be tried.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to true in interactive sessions only. The value of this
parameter can also be a function to call with the application’s URL.

host The IPv4 address that the application should listen on. Defaults to the shiny.host
option, if set, or "127.0.0.1" if not. See Details.

workerId Can generally be ignored. Exists to help some editions of Shiny Server Pro route
requests to the correct process.

quiet Should Shiny status messages be shown? Defaults to FALSE.

display.mode The mode in which to display the application. If set to the value "showcase",
shows application code and metadata from a DESCRIPTION file in the application
directory alongside the application. If set to "normal", displays the application
normally. Defaults to "auto", which displays the application in the mode given
in its DESCRIPTION file, if any.

test.mode Should the application be launched in test mode? This is only used for recording
or running automated tests. Defaults to the shiny.testmode option, or FALSE
if the option is not set.

Details

The host parameter was introduced in Shiny 0.9.0. Its default value of "127.0.0.1" means that,
contrary to previous versions of Shiny, only the current machine can access locally hosted Shiny
apps. To allow other clients to connect, use the value "0.0.0.0" instead (which was the value that
was hard-coded into Shiny in 0.8.0 and earlier).

Examples

Not run:
Start app in the current working directory
runApp()

Start app in a subdirectory called myapp
runApp("myapp")

End(Not run)

Only run this example in interactive R sessions
if (interactive()) {

runExample 175

options(device.ask.default = FALSE)

Apps can be run without a server.r and ui.r file
runApp(list(

ui = bootstrapPage(
numericInput('n', 'Number of obs', 100),
plotOutput('plot')

),
server = function(input, output) {

output$plot <- renderPlot({ hist(runif(input$n)) })
}

))

Running a Shiny app object
app <- shinyApp(

ui = bootstrapPage(
numericInput('n', 'Number of obs', 100),
plotOutput('plot')

),
server = function(input, output) {

output$plot <- renderPlot({ hist(runif(input$n)) })
}

)
runApp(app)

}

runExample Run Shiny Example Applications

Description

Launch Shiny example applications, and optionally, your system’s web browser.

Usage

runExample(
example = NA,
port = getOption("shiny.port"),
launch.browser = getOption("shiny.launch.browser", interactive()),
host = getOption("shiny.host", "127.0.0.1"),
display.mode = c("auto", "normal", "showcase"),
package = "shiny"

)

Arguments

example The name of the example to run, or NA (the default) to list the available examples.

176 runGadget

port The TCP port that the application should listen on. If the port is not specified,
and the shiny.port option is set (with options(shiny.port = XX)), then that
port will be used. Otherwise, use a random port between 3000:8000, excluding
ports that are blocked by Google Chrome for being considered unsafe: 3659,
4045, 5060, 5061, 6000, 6566, 6665:6669 and 6697. Up to twenty random ports
will be tried.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to true in interactive sessions only.

host The IPv4 address that the application should listen on. Defaults to the shiny.host
option, if set, or "127.0.0.1" if not.

display.mode The mode in which to display the example. Defaults to showcase, but may be
set to normal to see the example without code or commentary.

package The package in which to find the example (defaults to "shiny").
To provide examples in your package, store examples in the inst/examples-shiny
directory of your package. Each example should be in its own subdirectory and
should be runnable when runApp() is called on the subdirectory. Example apps
can include a DESCRIPTION file and a README.md file to provide metadata and
commentary about the example. See the article on Display Modes on the Shiny
website for more information.

Examples

Only run this example in interactive R sessions
if (interactive()) {

List all available examples
runExample()

Run one of the examples
runExample("01_hello")

Print the directory containing the code for all examples
system.file("examples", package="shiny")

}

runGadget Run a gadget

Description

Similar to runApp, but handles input$cancel automatically, and if running in RStudio, defaults to
viewing the app in the Viewer pane.

Usage

runGadget(
app,
server = NULL,

https://shiny.posit.co/r/articles/build/display-modes/

runTests 177

port = getOption("shiny.port"),
viewer = paneViewer(),
stopOnCancel = TRUE

)

Arguments

app Either a Shiny app object as created by shinyApp() et al, or, a UI object.

server Ignored if app is a Shiny app object; otherwise, passed along to shinyApp (i.e.
shinyApp(ui = app, server = server)).

port See runApp().

viewer Specify where the gadget should be displayed–viewer pane, dialog window, or
external browser–by passing in a call to one of the viewer() functions.

stopOnCancel If TRUE (the default), then an observeEvent is automatically created that han-
dles input$cancel by calling stopApp() with an error. Pass FALSE if you want
to handle input$cancel yourself.

Value

The value returned by the gadget.

Examples

Not run:
library(shiny)

ui <- fillPage(...)

server <- function(input, output, session) {
...

}

Either pass ui/server as separate arguments...
runGadget(ui, server)

...or as a single app object
runGadget(shinyApp(ui, server))

End(Not run)

runTests Runs the tests associated with this Shiny app

Description

Sources the .R files in the top-level of tests/ much like R CMD check. These files are typically
simple runners for tests nested in other directories under tests/.

178 runUrl

Usage

runTests(appDir = ".", filter = NULL, assert = TRUE, envir = globalenv())

Arguments

appDir The base directory for the application.

filter If not NULL, only tests with file names matching this regular expression will be
executed. Matching is performed on the file name including the extension.

assert Logical value which determines if an error should be thrown if any error is
captured.

envir Parent testing environment in which to base the individual testing environments.

Details

Historically, shinytest recommended placing tests at the top-level of the tests/ directory. This
older folder structure is not supported by runTests. Please see shinyAppTemplate() for more
details.

Value

A data frame classed with the supplemental class "shiny_runtests". The data frame has the
following columns:

Name Type Meaning
file character(1) File name of the runner script in tests/ that was sourced.
pass logical(1) Whether or not the runner script signaled an error when sourced.
result any or NA The return value of the runner

runUrl Run a Shiny application from a URL

Description

runUrl() downloads and launches a Shiny application that is hosted at a downloadable URL. The
Shiny application must be saved in a .zip, .tar, or .tar.gz file. The Shiny application files must
be contained in the root directory or a subdirectory in the archive. For example, the files might
be myapp/server.r and myapp/ui.r. The functions runGitHub() and runGist() are based on
runUrl(), using URL’s from GitHub (https://github.com) and GitHub gists (https://gist.
github.com), respectively.

https://rstudio.github.io/shinytest/
https://github.com
https://gist.github.com
https://gist.github.com

runUrl 179

Usage

runUrl(url, filetype = NULL, subdir = NULL, destdir = NULL, ...)

runGist(gist, destdir = NULL, ...)

runGitHub(
repo,
username = getOption("github.user"),
ref = "HEAD",
subdir = NULL,
destdir = NULL,
...

)

Arguments

url URL of the application.

filetype The file type (".zip", ".tar", or ".tar.gz". Defaults to the file extension
taken from the url.

subdir A subdirectory in the repository that contains the app. By default, this function
will run an app from the top level of the repo, but you can use a path such as
"inst/shinyapp".

destdir Directory to store the downloaded application files. If NULL (the default), the
application files will be stored in a temporary directory and removed when the
app exits

... Other arguments to be passed to runApp(), such as port and launch.browser.

gist The identifier of the gist. For example, if the gist is https://gist.github.com/jcheng5/3239667,
then 3239667, '3239667', and 'https://gist.github.com/jcheng5/3239667'
are all valid values.

repo Name of the repository.

username GitHub username. If repo is of the form "username/repo", username will be
taken from repo.

ref Desired git reference. Could be a commit, tag, or branch name. Defaults
to "HEAD", which means the default branch on GitHub, typically "main" or
"master".

Examples

Only run this example in interactive R sessions
if (interactive()) {

runUrl('https://github.com/rstudio/shiny_example/archive/main.tar.gz')

Can run an app from a subdirectory in the archive
runUrl("https://github.com/rstudio/shiny_example/archive/main.zip",

subdir = "inst/shinyapp/")
}
Only run this example in interactive R sessions

180 safeError

if (interactive()) {
runGist(3239667)
runGist("https://gist.github.com/jcheng5/3239667")

Old URL format without username
runGist("https://gist.github.com/3239667")

}

Only run this example in interactive R sessions
if (interactive()) {

runGitHub("shiny_example", "rstudio")
or runGitHub("rstudio/shiny_example")

Can run an app from a subdirectory in the repo
runGitHub("shiny_example", "rstudio", subdir = "inst/shinyapp/")

}

safeError Declare an error safe for the user to see

Description

This should be used when you want to let the user see an error message even if the default is to
sanitize all errors. If you have an error e and call stop(safeError(e)), then Shiny will ignore the
value of getOption("shiny.sanitize.errors") and always display the error in the app itself.

Usage

safeError(error)

Arguments

error Either an "error" object or a "character" object (string). In the latter case, the
string will become the message of the error returned by safeError.

Details

An error generated by safeError has priority over all other Shiny errors. This can be dangerous.
For example, if you have set options(shiny.sanitize.errors = TRUE), then by default all error
messages are omitted in the app, and replaced by a generic error message. However, this does not
apply to safeError: whatever you pass through error will be displayed to the user. So, this should
only be used when you are sure that your error message does not contain any sensitive information.
In those situations, safeError can make your users’ lives much easier by giving them a hint as to
where the error occurred.

Value

An "error" object

selectInput 181

See Also

shiny-options()

Examples

Only run examples in interactive R sessions
if (interactive()) {

uncomment the desired line to experiment with shiny.sanitize.errors
options(shiny.sanitize.errors = TRUE)
options(shiny.sanitize.errors = FALSE)

Define UI
ui <- fluidPage(

textInput('number', 'Enter your favorite number from 1 to 10', '5'),
textOutput('normalError'),
textOutput('safeError')

)

Server logic
server <- function(input, output) {

output$normalError <- renderText({
number <- input$number
if (number %in% 1:10) {

return(paste('You chose', number, '!'))
} else {

stop(
paste(number, 'is not a number between 1 and 10')

)
}

})
output$safeError <- renderText({

number <- input$number
if (number %in% 1:10) {

return(paste('You chose', number, '!'))
} else {

stop(safeError(
paste(number, 'is not a number between 1 and 10')

))
}

})
}

Complete app with UI and server components
shinyApp(ui, server)
}

selectInput Create a select list input control

182 selectInput

Description

Create a select list that can be used to choose a single or multiple items from a list of values.

Usage

selectInput(
inputId,
label,
choices,
selected = NULL,
multiple = FALSE,
selectize = TRUE,
width = NULL,
size = NULL

)

selectizeInput(inputId, ..., options = NULL, width = NULL)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to select from. If elements of the list are named, then that name —
rather than the value — is displayed to the user. It’s also possible to group related
inputs by providing a named list whose elements are (either named or unnamed)
lists, vectors, or factors. In this case, the outermost names will be used as the
group labels (leveraging the <optgroup> HTML tag) for the elements in the
respective sublist. See the example section for a small demo of this feature.

selected The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.

multiple Is selection of multiple items allowed?

selectize Whether to use selectize.js or not.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

size Number of items to show in the selection box; a larger number will result in a
taller box. Not compatible with selectize=TRUE. Normally, when multiple=FALSE,
a select input will be a drop-down list, but when size is set, it will be a box in-
stead.

... Arguments passed to selectInput().

options A list of options. See the documentation of selectize.js(https://selectize.
dev/docs/usage) for possible options (character option values inside base::I()
will be treated as literal JavaScript code; see renderDataTable() for details).

https://selectize.dev/docs/usage
https://selectize.dev/docs/usage

selectInput 183

Details

By default, selectInput() and selectizeInput() use the JavaScript library selectize.js (https:
//selectize.dev/) instead of the basic select input element. To use the standard HTML select
input element, use selectInput() with selectize=FALSE.

In selectize mode, if the first element in choices has a value of "", its name will be treated as
a placeholder prompt. For example: selectInput("letter", "Letter", c("Choose one" = "",
LETTERS))

Performance note: selectInput() and selectizeInput() can slow down significantly when
thousands of choices are used; with legacy browsers like Internet Explorer, the user interface may
hang for many seconds. For large numbers of choices, Shiny offers a "server-side selectize" option
that massively improves performance and efficiency; see this selectize article on the Shiny Dev
Center for details.

Value

A select list control that can be added to a UI definition.

Server value

A vector of character strings, usually of length 1, with the value of the selected items. When
multiple=TRUE and nothing is selected, this value will be NULL.

Note

The selectize input created from selectizeInput() allows deletion of the selected option even in
a single select input, which will return an empty string as its value. This is the default behavior
of selectize.js. However, the selectize input created from selectInput(..., selectize = TRUE)
will ignore the empty string value when it is a single choice input and the empty string is not in the
choices argument. This is to keep compatibility with selectInput(..., selectize = FALSE).

See Also

updateSelectInput() varSelectInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), sliderInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

basic example
shinyApp(

ui = fluidPage(
selectInput("variable", "Variable:",

c("Cylinders" = "cyl",
"Transmission" = "am",
"Gears" = "gear")),

https://selectize.dev/
https://selectize.dev/
https://shiny.rstudio.com/articles/selectize.html

184 serverInfo

tableOutput("data")
),
server = function(input, output) {

output$data <- renderTable({
mtcars[, c("mpg", input$variable), drop = FALSE]

}, rownames = TRUE)
}

)

demoing group support in the `choices` arg
shinyApp(

ui = fluidPage(
selectInput("state", "Choose a state:",

list(`East Coast` = list("NY", "NJ", "CT"),
`West Coast` = list("WA", "OR", "CA"),
`Midwest` = list("MN", "WI", "IA"))

),
textOutput("result")

),
server = function(input, output) {

output$result <- renderText({
paste("You chose", input$state)

})
}

)
}

serverInfo Collect information about the Shiny Server environment

Description

This function returns the information about the current Shiny Server, such as its version, and
whether it is the open source edition or professional edition. If the app is not served through the
Shiny Server, this function just returns list(shinyServer = FALSE).

Usage

serverInfo()

Details

This function will only return meaningful data when using Shiny Server version 1.2.2 or later.

Value

A list of the Shiny Server information.

session 185

session Session object

Description

Shiny server functions can optionally include session as a parameter (e.g. function(input, output, session)).
The session object is an environment that can be used to access information and functionality relat-
ing to the session. The following list describes the items available in the environment; they can be
accessed using the $ operator (for example, session$clientData$url_search).

Value
allowReconnect(value)

If value is TRUE and run in a hosting environment (Shiny Server or Connect)
with reconnections enabled, then when the session ends due to the network con-
nection closing, the client will attempt to reconnect to the server. If a recon-
nection is successful, the browser will send all the current input values to the
new session on the server, and the server will recalculate any outputs and send
them back to the client. If value is FALSE, reconnections will be disabled (this
is the default state). If "force", then the client browser will always attempt to
reconnect. The only reason to use "force" is for testing on a local connection
(without Shiny Server or Connect).

clientData A reactiveValues() object that contains information about the client.

• pixelratio reports the "device pixel ratio" from the web browser, or 1 if
none is reported. The value is 2 for Apple Retina displays.

• singletons - for internal use
• url_protocol, url_hostname, url_port, url_pathname, url_search,
url_hash_initial and url_hash can be used to get the components of
the URL that was requested by the browser to load the Shiny app page.
These values are from the browser’s perspective, so neither HTTP proxies
nor Shiny Server will affect these values. The url_search value may be
used with parseQueryString() to access query string parameters.

clientData also contains information about each output. output_outputId_width
and output_outputId_height give the dimensions (using offsetWidth and
offsetHeight) of the DOM element that is bound to outputId , and output_outputId_hidden
is a logical that indicates whether the element is hidden. These values may be
NULL if the output is not bound.

input The session’s input object (the same as is passed into the Shiny server function
as an argument).

isClosed() A function that returns TRUE if the client has disconnected.

ns(id) Server-side version of ns <- NS(id). If bare IDs need to be explicitly names-
paced for the current module, session$ns("name") will return the fully-qualified
ID.

onEnded(callback)

Synonym for onSessionEnded.

186 session

onFlush(func, once=TRUE)
Registers a function to be called before the next time (if once=TRUE) or every
time (if once=FALSE) Shiny flushes the reactive system. Returns a function that
can be called with no arguments to cancel the registration.

onFlushed(func, once=TRUE)
Registers a function to be called after the next time (if once=TRUE) or every time
(if once=FALSE) Shiny flushes the reactive system. Returns a function that can
be called with no arguments to cancel the registration.

onSessionEnded(callback)

Registers a function to be called after the client has disconnected. Returns a
function that can be called with no arguments to cancel the registration.

output The session’s output object (the same as is passed into the Shiny server function
as an argument).

reactlog For internal use.

registerDataObj(name, data, filterFunc)
Publishes any R object as a URL endpoint that is unique to this session. name
must be a single element character vector; it will be used to form part of the
URL. filterFunc must be a function that takes two arguments: data (the value
that was passed into registerDataObj) and req (an environment that imple-
ments the Rook specification for HTTP requests). filterFunc will be called
with these values whenever an HTTP request is made to the URL endpoint. The
return value of filterFunc should be a Rook-style response.

reload() The equivalent of hitting the browser’s Reload button. Only works if the session
is actually connected.

request An environment that implements the Rook specification for HTTP requests.
This is the request that was used to initiate the websocket connection (as op-
posed to the request that downloaded the web page for the app).

userData An environment for app authors and module/package authors to store whatever
session-specific data they want.

user User’s log-in information. Useful for identifying users on hosted platforms such
as RStudio Connect and Shiny Server.

groups The user’s relevant group information. Useful for determining what privileges
the user should or shouldn’t have.

resetBrush(brushId)

Resets/clears the brush with the given brushId, if it exists on any imageOutput
or plotOutput in the app.

sendCustomMessage(type, message)
Sends a custom message to the web page. type must be a single-element char-
acter vector giving the type of message, while message can be any jsonlite-
encodable value. Custom messages have no meaning to Shiny itself; they are
used solely to convey information to custom JavaScript logic in the browser. You
can do this by adding JavaScript code to the browser that calls Shiny.addCustomMessageHandler(type,
function(message){...}) as the page loads; the function you provide to addCustomMessageHandler
will be invoked each time sendCustomMessage is called on the server.

https://github.com/jeffreyhorner/Rook#the-environment

session 187

sendBinaryMessage(type, message)
Similar to sendCustomMessage, but the message must be a raw vector and the
registration method on the client is Shiny.addBinaryMessageHandler(type,
function(message){...}). The message argument on the client will be a
DataView.

sendInputMessage(inputId, message)
Sends a message to an input on the session’s client web page; if the input is
present and bound on the page at the time the message is received, then the
input binding object’s receiveMessage(el, message) method will be called.
sendInputMessage should generally not be called directly from Shiny apps, but
through friendlier wrapper functions like updateTextInput().

setBookmarkExclude(names)

Set input names to be excluded from bookmarking.
getBookmarkExclude()

Returns the set of input names to be excluded from bookmarking.
onBookmark(fun)

Registers a function that will be called just before bookmarking state.
onBookmarked(fun)

Registers a function that will be called just after bookmarking state.

onRestore(fun) Registers a function that will be called when a session is restored, before all
other reactives, observers, and render functions are run.

onRestored(fun)

Registers a function that will be called when a session is restored, after all other
reactives, observers, and render functions are run.

doBookmark() Do bookmarking and invoke the onBookmark and onBookmarked callback func-
tions.

exportTestValues()

Registers expressions for export in test mode, available at the test snapshot URL.
getTestSnapshotUrl(input=TRUE, output=TRUE, export=TRUE,
format="json")

Returns a URL for the test snapshots. Only has an effect when the shiny.testmode
option is set to TRUE. For the input, output, and export arguments, TRUE means
to return all of these values. It is also possible to specify by name which values
to return by providing a character vector, as in input=c("x", "y"). The format
can be "rds" or "json".

setCurrentTheme(theme)

Sets the current bootstrapLib() theme, which updates the value of getCurrentTheme(),
invalidates session$getCurrentTheme(), and calls function(s) registered with
registerThemeDependency() with provided theme. If those function calls re-
turn htmltools::htmlDependency()s with stylesheets, then those stylesheets
are "refreshed" (i.e., the new stylesheets are inserted on the page and the old ones
are disabled and removed).

getCurrentTheme()

A reactive read of the current bootstrapLib() theme.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView

188 setSerializer

setBookmarkExclude Exclude inputs from bookmarking

Description

This function tells Shiny which inputs should be excluded from bookmarking. It should be called
from inside the application’s server function.

Usage

setBookmarkExclude(names = character(0), session = getDefaultReactiveDomain())

Arguments

names A character vector containing names of inputs to exclude from bookmarking.

session A shiny session object.

Details

This function can also be called from a module’s server function, in which case it will exclude
inputs with the specified names, from that module. It will not affect inputs from other modules or
from the top level of the Shiny application.

See Also

enableBookmarking() for examples.

setSerializer Add a function for serializing an input before bookmarking application
state

Description

Add a function for serializing an input before bookmarking application state

Usage

setSerializer(inputId, fun, session = getDefaultReactiveDomain())

Arguments

inputId Name of the input value.

fun A function that takes the input value and returns a modified value. The returned
value will be used for the test snapshot.

session A Shiny session object.

shinyApp 189

shinyApp Create a Shiny app object

Description

These functions create Shiny app objects from either an explicit UI/server pair (shinyApp), or by
passing the path of a directory that contains a Shiny app (shinyAppDir).

Usage

shinyApp(
ui,
server,
onStart = NULL,
options = list(),
uiPattern = "/",
enableBookmarking = NULL

)

shinyAppDir(appDir, options = list())

shinyAppFile(appFile, options = list())

Arguments

ui The UI definition of the app (for example, a call to fluidPage() with nested
controls).
If bookmarking is enabled (see enableBookmarking), this must be a single ar-
gument function that returns the UI definition.

server A function with three parameters: input, output, and session. The function
is called once for each session ensuring that each app is independent.

onStart A function that will be called before the app is actually run. This is only needed
for shinyAppObj, since in the shinyAppDir case, a global.R file can be used
for this purpose.

options Named options that should be passed to the runApp call (these can be any of
the following: "port", "launch.browser", "host", "quiet", "display.mode" and
"test.mode"). You can also specify width and height parameters which pro-
vide a hint to the embedding environment about the ideal height/width for the
app.

uiPattern A regular expression that will be applied to each GET request to determine whether
the ui should be used to handle the request. Note that the entire request path
must match the regular expression in order for the match to be considered suc-
cessful.

enableBookmarking

Can be one of "url", "server", or "disable". The default value, NULL, will re-
spect the setting from any previous calls to enableBookmarking(). See enableBookmarking()
for more information on bookmarking your app.

190 shinyApp

appDir Path to directory that contains a Shiny app (i.e. a server.R file and either ui.R or
www/index.html)

appFile Path to a .R file containing a Shiny application

Details

Normally when this function is used at the R console, the Shiny app object is automatically passed
to the print() function, which runs the app. If this is called in the middle of a function, the value
will not be passed to print() and the app will not be run. To make the app run, pass the app object
to print() or runApp().

Value

An object that represents the app. Printing the object or passing it to runApp() will run the app.

Examples

Only run this example in interactive R sessions
if (interactive()) {

options(device.ask.default = FALSE)

shinyApp(
ui = fluidPage(

numericInput("n", "n", 1),
plotOutput("plot")

),
server = function(input, output) {

output$plot <- renderPlot(plot(head(cars, input$n)))
}

)

shinyAppDir(system.file("examples/01_hello", package="shiny"))

The object can be passed to runApp()
app <- shinyApp(

ui = fluidPage(
numericInput("n", "n", 1),
plotOutput("plot")

),
server = function(input, output) {

output$plot <- renderPlot(plot(head(cars, input$n)))
}

)

runApp(app)
}

shinyAppTemplate 191

shinyAppTemplate Generate a Shiny application from a template

Description

This function populates a directory with files for a Shiny application.

Usage

shinyAppTemplate(path = NULL, examples = "default", dryrun = FALSE)

Arguments

path Path to create new shiny application template.
examples Either one of "default", "ask", "all", or any combination of "app", "rdir", "mod-

ule", and "tests". In an interactive session, "default" falls back to "ask"; in a
non-interactive session, "default" falls back to "all". With "ask", this function
will prompt the user to select which template items will be added to the new app
directory. With "all", all template items will be added to the app directory.

dryrun If TRUE, don’t actually write any files; just print out which files would be written.

Details

In an interactive R session, this function will, by default, prompt the user to select which compo-
nents to add to the application. Choices are

1: All
2: app.R : Main application file
3: R/example.R : Helper file with R code
4: R/example-module.R : Example module
5: tests/testthat/ : Tests using the testthat and shinytest2 package

If option 1 is selected, the full example application including the following files and directories is
created:

appdir/
|- app.R
|- R
| |- example-module.R
| `- example.R
`- tests

|- testthat.R
`- testthat

|- setup-shinytest2.R
|- test-examplemodule.R
|- test-server.R
|- test-shinytest2.R
`- test-sort.R

192 showBookmarkUrlModal

Some notes about these files:

• app.R is the main application file.

• All files in the R/ subdirectory are automatically sourced when the application is run.

• R/example.R and R/example-module.R are automatically sourced when the application is
run. The first contains a function lexical_sort(), and the second contains code for module
created by the moduleServer() function, which is used in the application.

• tests/ contains various tests for the application. You may choose to use or remove any of
them. They can be executed by the runTests() function.

• tests/testthat.R is a test runner for test files in the tests/testthat/ directory using the
shinytest2 package.

• tests/testthat/setup-shinytest2.R is setup file to source your ./R folder into the testing
environment.

• tests/testthat/test-examplemodule.R is a test for an application’s module server func-
tion.

• tests/testthat/test-server.R is a test for the application’s server code

• tests/testthat/test-shinytest2.R is a test that uses the shinytest2 package to do snapshot-
based testing.

• tests/testthat/test-sort.R is a test for a supporting function in the R/ directory.

showBookmarkUrlModal Display a modal dialog for bookmarking

Description

This is a wrapper function for urlModal() that is automatically called if an application is book-
marked but no other onBookmark() callback was set. It displays a modal dialog with the bookmark
URL, along with a subtitle that is appropriate for the type of bookmarking used ("url" or "server").

Usage

showBookmarkUrlModal(url)

Arguments

url A URL to show in the modal dialog.

https://rstudio.github.io/shinytest2/reference/test_app.html
https://rstudio.github.io/shinytest2/

showModal 193

showModal Show or remove a modal dialog

Description

This causes a modal dialog to be displayed in the client browser, and is typically used with modalDialog().

Usage

showModal(ui, session = getDefaultReactiveDomain())

removeModal(session = getDefaultReactiveDomain())

Arguments

ui UI content to show in the modal.

session The session object passed to function given to shinyServer.

See Also

modalDialog() for examples.

showNotification Show or remove a notification

Description

These functions show and remove notifications in a Shiny application.

Usage

showNotification(
ui,
action = NULL,
duration = 5,
closeButton = TRUE,
id = NULL,
type = c("default", "message", "warning", "error"),
session = getDefaultReactiveDomain()

)

removeNotification(id, session = getDefaultReactiveDomain())

194 showNotification

Arguments

ui Content of message.

action Message content that represents an action. For example, this could be a link that
the user can click on. This is separate from ui so customized layouts can handle
the main notification content separately from action content.

duration Number of seconds to display the message before it disappears. Use NULL to
make the message not automatically disappear.

closeButton If TRUE, display a button which will make the notification disappear when clicked.
If FALSE do not display.

id A unique identifier for the notification.
id is optional for showNotification(): Shiny will automatically create one if
needed. If you do supply it, Shiny will update an existing notification if it exists,
otherwise it will create a new one.
id is required for removeNotification().

type A string which controls the color of the notification. One of "default" (gray),
"message" (blue), "warning" (yellow), or "error" (red).

session Session object to send notification to.

Value

An ID for the notification.

Examples

Only run examples in interactive R sessions
if (interactive()) {
Show a message when button is clicked
shinyApp(

ui = fluidPage(
actionButton("show", "Show")

),
server = function(input, output) {

observeEvent(input$show, {
showNotification("Message text",

action = a(href = "javascript:location.reload();", "Reload page")
)

})
}

)

App with show and remove buttons
shinyApp(

ui = fluidPage(
actionButton("show", "Show"),
actionButton("remove", "Remove")

),
server = function(input, output) {

A queue of notification IDs

showTab 195

ids <- character(0)
A counter
n <- 0

observeEvent(input$show, {
Save the ID for removal later
id <- showNotification(paste("Message", n), duration = NULL)
ids <<- c(ids, id)
n <<- n + 1

})

observeEvent(input$remove, {
if (length(ids) > 0)

removeNotification(ids[1])
ids <<- ids[-1]

})
}

)
}

showTab Dynamically hide/show a tabPanel

Description

Dynamically hide or show a tabPanel() (or a navbarMenu())from an existing tabsetPanel(),
navlistPanel() or navbarPage().

Usage

showTab(inputId, target, select = FALSE, session = getDefaultReactiveDomain())

hideTab(inputId, target, session = getDefaultReactiveDomain())

Arguments

inputId The id of the tabsetPanel (or navlistPanel or navbarPage) in which to find
target.

target The value of the tabPanel to be hidden/shown. See Details if you want to
hide/show an entire navbarMenu instead.

select Should target be selected upon being shown?

session The shiny session within which to call this function.

Details

For navbarPage, you can hide/show conventional tabPanels (whether at the top level or nested
inside a navbarMenu), as well as an entire navbarMenu(). For the latter case, target should be the
menuName that you gave your navbarMenu when you first created it (by default, this is equal to the
value of the title argument).

196 sidebarLayout

See Also

insertTab()

Examples

Only run this example in interactive R sessions
if (interactive()) {

ui <- navbarPage("Navbar page", id = "tabs",
tabPanel("Home",
actionButton("hideTab", "Hide 'Foo' tab"),
actionButton("showTab", "Show 'Foo' tab"),
actionButton("hideMenu", "Hide 'More' navbarMenu"),
actionButton("showMenu", "Show 'More' navbarMenu")

),
tabPanel("Foo", "This is the foo tab"),
tabPanel("Bar", "This is the bar tab"),
navbarMenu("More",

tabPanel("Table", "Table page"),
tabPanel("About", "About page"),
"------",
"Even more!",
tabPanel("Email", "Email page")

)
)

server <- function(input, output, session) {
observeEvent(input$hideTab, {

hideTab(inputId = "tabs", target = "Foo")
})

observeEvent(input$showTab, {
showTab(inputId = "tabs", target = "Foo")

})

observeEvent(input$hideMenu, {
hideTab(inputId = "tabs", target = "More")

})

observeEvent(input$showMenu, {
showTab(inputId = "tabs", target = "More")

})
}

shinyApp(ui, server)
}

sidebarLayout Layout a sidebar and main area

sidebarLayout 197

Description

Create a layout (sidebarLayout()) with a sidebar (sidebarPanel()) and main area (mainPanel()).
The sidebar is displayed with a distinct background color and typically contains input controls. The
main area occupies 2/3 of the horizontal width and typically contains outputs.

Usage

sidebarLayout(
sidebarPanel,
mainPanel,
position = c("left", "right"),
fluid = TRUE

)

sidebarPanel(..., width = 4)

mainPanel(..., width = 8)

Arguments

sidebarPanel The sidebarPanel() containing input controls.

mainPanel The mainPanel() containing outputs.

position The position of the sidebar relative to the main area ("left" or "right").

fluid TRUE to use fluid layout; FALSE to use fixed layout.

... Output elements to include in the sidebar/main panel.

width The width of the sidebar and main panel. By default, the sidebar takes up 1/3 of
the width, and the main panel 2/3. The total width must be 12 or less.

See Also

Other layout functions: fillPage(), fixedPage(), flowLayout(), fluidPage(), navbarPage(),
splitLayout(), verticalLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

Define UI
ui <- fluidPage(

Application title
titlePanel("Hello Shiny!"),

sidebarLayout(

Sidebar with a slider input

198 sizeGrowthRatio

sidebarPanel(
sliderInput("obs",

"Number of observations:",
min = 0,
max = 1000,
value = 500)

),

Show a plot of the generated distribution
mainPanel(

plotOutput("distPlot")
)

)
)

Server logic
server <- function(input, output) {

output$distPlot <- renderPlot({
hist(rnorm(input$obs))

})
}

Complete app with UI and server components
shinyApp(ui, server)
}

sizeGrowthRatio Create a sizing function that grows at a given ratio

Description

Returns a function which takes a two-element vector representing an input width and height, and
returns a two-element vector of width and height. The possible widths are the base width times the
growthRate to any integer power. For example, with a base width of 500 and growth rate of 1.25,
the possible widths include 320, 400, 500, 625, 782, and so on, both smaller and larger. Sizes are
rounded up to the next pixel. Heights are computed the same way as widths.

Usage

sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2)

Arguments

width, height Base width and height.

growthRate Growth rate multiplier.

See Also

This is to be used with renderCachedPlot().

sliderInput 199

Examples

f <- sizeGrowthRatio(500, 500, 1.25)
f(c(400, 400))
f(c(500, 500))
f(c(530, 550))
f(c(625, 700))

sliderInput Slider Input Widget

Description

Constructs a slider widget to select a number, date, or date-time from a range.

Usage

sliderInput(
inputId,
label,
min,
max,
value,
step = NULL,
round = FALSE,
ticks = TRUE,
animate = FALSE,
width = NULL,
sep = ",",
pre = NULL,
post = NULL,
timeFormat = NULL,
timezone = NULL,
dragRange = TRUE

)

animationOptions(
interval = 1000,
loop = FALSE,
playButton = NULL,
pauseButton = NULL

)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

200 sliderInput

min, max The minimum and maximum values (inclusive) that can be selected.

value The initial value of the slider, either a number, a date (class Date), or a date-time
(class POSIXt). A length one vector will create a regular slider; a length two
vector will create a double-ended range slider. Must lie between min and max.

step Specifies the interval between each selectable value on the slider. Either NULL,
the default, which uses a heuristic to determine the step size or a single number.
If the values are dates, step is in days; if the values are date-times, step is in
seconds.

round TRUE to round all values to the nearest integer; FALSE if no rounding is desired;
or an integer to round to that number of digits (for example, 1 will round to the
nearest 10, and -2 will round to the nearest .01). Any rounding will be applied
after snapping to the nearest step.

ticks FALSE to hide tick marks, TRUE to show them according to some simple heuris-
tics.

animate TRUE to show simple animation controls with default settings; FALSE not to; or a
custom settings list, such as those created using animationOptions().

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

sep Separator between thousands places in numbers.

pre A prefix string to put in front of the value.

post A suffix string to put after the value.

timeFormat Only used if the values are Date or POSIXt objects. A time format string, to be
passed to the Javascript strftime library. See https://github.com/samsonjs/
strftime for more details. The allowed format specifications are very similar,
but not identical, to those for R’s base::strftime() function. For Dates, the
default is "%F" (like "2015-07-01"), and for POSIXt, the default is "%F %T"
(like "2015-07-01 15:32:10").

timezone Only used if the values are POSIXt objects. A string specifying the time zone
offset for the displayed times, in the format "+HHMM" or "-HHMM". If NULL (the
default), times will be displayed in the browser’s time zone. The value "+0000"
will result in UTC time.

dragRange This option is used only if it is a range slider (with two values). If TRUE (the
default), the range can be dragged. In other words, the min and max can be
dragged together. If FALSE, the range cannot be dragged.

interval The interval, in milliseconds, between each animation step.

loop TRUE to automatically restart the animation when it reaches the end.

playButton Specifies the appearance of the play button. Valid values are a one-element
character vector (for a simple text label), an HTML tag or list of tags (using
tag() and friends), or raw HTML (using HTML()).

pauseButton Similar to playButton, but for the pause button.

Server value

A number, date, or date-time (depending on the class of value), or in the case of slider range, a
vector of two numbers/dates/date-times.

https://github.com/samsonjs/strftime
https://github.com/samsonjs/strftime

snapshotExclude 201

See Also

updateSliderInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
submitButton(), textAreaInput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

ui <- fluidPage(
sliderInput("obs", "Number of observations:",
min = 0, max = 1000, value = 500

),
plotOutput("distPlot")

)

Server logic
server <- function(input, output) {

output$distPlot <- renderPlot({
hist(rnorm(input$obs))

})
}

Complete app with UI and server components
shinyApp(ui, server)
}

snapshotExclude Mark an output to be excluded from test snapshots

Description

Mark an output to be excluded from test snapshots

Usage

snapshotExclude(x)

Arguments

x A reactive which will be assigned to an output.

202 snapshotPreprocessOutput

snapshotPreprocessInput

Add a function for preprocessing an input before taking a test snapshot

Description

Add a function for preprocessing an input before taking a test snapshot

Usage

snapshotPreprocessInput(inputId, fun, session = getDefaultReactiveDomain())

Arguments

inputId Name of the input value.

fun A function that takes the input value and returns a modified value. The returned
value will be used for the test snapshot.

session A Shiny session object.

snapshotPreprocessOutput

Add a function for preprocessing an output before taking a test snap-
shot

Description

Add a function for preprocessing an output before taking a test snapshot

Usage

snapshotPreprocessOutput(x, fun)

Arguments

x A reactive which will be assigned to an output.

fun A function that takes the output value as an input and returns a modified value.
The returned value will be used for the test snapshot.

splitLayout 203

splitLayout Split layout

Description

Lays out elements horizontally, dividing the available horizontal space into equal parts (by default).

Usage

splitLayout(..., cellWidths = NULL, cellArgs = list())

Arguments

... Unnamed arguments will become child elements of the layout. Named argu-
ments will become HTML attributes on the outermost tag.

cellWidths Character or numeric vector indicating the widths of the individual cells. Recy-
cling will be used if needed. Character values will be interpreted as CSS lengths
(see validateCssUnit()), numeric values as pixels.

cellArgs Any additional attributes that should be used for each cell of the layout.

See Also

Other layout functions: fillPage(), fixedPage(), flowLayout(), fluidPage(), navbarPage(),
sidebarLayout(), verticalLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

Server code used for all examples
server <- function(input, output) {

output$plot1 <- renderPlot(plot(cars))
output$plot2 <- renderPlot(plot(pressure))
output$plot3 <- renderPlot(plot(AirPassengers))

}

Equal sizing
ui <- splitLayout(

plotOutput("plot1"),
plotOutput("plot2")

)
shinyApp(ui, server)

Custom widths
ui <- splitLayout(cellWidths = c("25%", "75%"),

plotOutput("plot1"),

204 submitButton

plotOutput("plot2")
)
shinyApp(ui, server)

All cells at 300 pixels wide, with cell padding
and a border around everything
ui <- splitLayout(

style = "border: 1px solid silver;",
cellWidths = 300,
cellArgs = list(style = "padding: 6px"),
plotOutput("plot1"),
plotOutput("plot2"),
plotOutput("plot3")

)
shinyApp(ui, server)
}

stopApp Stop the currently running Shiny app

Description

Stops the currently running Shiny app, returning control to the caller of runApp().

Usage

stopApp(returnValue = invisible())

Arguments

returnValue The value that should be returned from runApp().

submitButton Create a submit button

Description

Create a submit button for an app. Apps that include a submit button do not automatically update
their outputs when inputs change, rather they wait until the user explicitly clicks the submit button.
The use of submitButton is generally discouraged in favor of the more versatile actionButton()
(see details below).

Usage

submitButton(text = "Apply Changes", icon = NULL, width = NULL)

submitButton 205

Arguments

text Button caption

icon Optional icon() to appear on the button

width The width of the button, e.g. '400px', or '100%'; see validateCssUnit().

Details

Submit buttons are unusual Shiny inputs, and we recommend using actionButton() instead of
submitButton when you want to delay a reaction. See this article for more information (including
a demo of how to "translate" code using a submitButton to code using an actionButton).

In essence, the presence of a submit button stops all inputs from sending their values automatically
to the server. This means, for instance, that if there are two submit buttons in the same app, clicking
either one will cause all inputs in the app to send their values to the server. This is probably not what
you’d want, which is why submit button are unwieldy for all but the simplest apps. There are other
problems with submit buttons: for example, dynamically created submit buttons (for example, with
renderUI() or insertUI()) will not work.

Value

A submit button that can be added to a UI definition.

See Also

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), textAreaInput(), textInput(), varSelectInput()

Examples

if (interactive()) {

shinyApp(
ui = basicPage(
numericInput("num", label = "Make changes", value = 1),
submitButton("Update View", icon("refresh")),
helpText("When you click the button above, you should see",

"the output below update to reflect the value you",
"entered at the top:"),

verbatimTextOutput("value")
),
server = function(input, output) {

submit buttons do not have a value of their own,
they control when the app accesses values of other widgets.
input$num is the value of the number widget.
output$value <- renderPrint({ input$num })

}
)
}

https://shiny.rstudio.com/articles/action-buttons.html

206 tableOutput

tableOutput Table Output

Description

The tableOuptut()/renderTable() pair creates a reactive table that is suitable for display small
matrices and data frames. The columns are formatted with xtable::xtable().

See renderDataTable() for data frames that are too big to fit on a single page.

Usage

tableOutput(outputId)

renderTable(
expr,
striped = FALSE,
hover = FALSE,
bordered = FALSE,
spacing = c("s", "xs", "m", "l"),
width = "auto",
align = NULL,
rownames = FALSE,
colnames = TRUE,
digits = NULL,
na = "NA",
...,
env = parent.frame(),
quoted = FALSE,
outputArgs = list()

)

Arguments

outputId output variable to read the table from

expr An expression that returns an R object that can be used with xtable::xtable().
striped, hover, bordered

Logicals: if TRUE, apply the corresponding Bootstrap table format to the output
table.

spacing The spacing between the rows of the table (xs stands for "extra small", s for
"small", m for "medium" and l for "large").

width Table width. Must be a valid CSS unit (like "100%", "400px", "auto") or a
number, which will be coerced to a string and have "px" appended.

align A string that specifies the column alignment. If equal to 'l', 'c' or 'r', then all
columns will be, respectively, left-, center- or right-aligned. Otherwise, align
must have the same number of characters as the resulting table (if rownames

tableOutput 207

= TRUE, this will be equal to ncol()+1), with the i-th character specifying the
alignment for the i-th column (besides 'l', 'c' and 'r', '?' is also permitted
- '?' is a placeholder for that particular column, indicating that it should keep
its default alignment). If NULL, then all numeric/integer columns (including the
row names, if they are numbers) will be right-aligned and everything else will
be left-aligned (align = '?' produces the same result).

rownames, colnames
Logicals: include rownames? include colnames (column headers)?

digits An integer specifying the number of decimal places for the numeric columns
(this will not apply to columns with an integer class). If digits is set to a
negative value, then the numeric columns will be displayed in scientific format
with a precision of abs(digits) digits.

na The string to use in the table cells whose values are missing (i.e. they either
evaluate to NA or NaN).

... Arguments to be passed through to xtable::xtable() and xtable::print.xtable().

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
expr is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of expr will be used when expr is eval-
uated. If expr is a quosure and you would like to use its expression as a value
for expr, then you must set quoted to TRUE.

outputArgs A list of arguments to be passed through to the implicit call to tableOutput()
when renderTable is used in an interactive R Markdown document.

Examples

Only run this example in interactive R sessions
if (interactive()) {

table example
shinyApp(

ui = fluidPage(
fluidRow(

column(12,
tableOutput('table')

)
)

),
server = function(input, output) {

output$table <- renderTable(iris)
}

)
}

208 tabPanel

tabPanel Create a tab panel

Description

Create a tab panel

Usage

tabPanel(title, ..., value = title, icon = NULL)

tabPanelBody(value, ..., icon = NULL)

Arguments

title Display title for tab

... UI elements to include within the tab

value The value that should be sent when tabsetPanel reports that this tab is selected.
If omitted and tabsetPanel has an id, then the title will be used.

icon Optional icon to appear on the tab. This attribute is only valid when using a
tabPanel within a navbarPage().

Value

A tab that can be passed to tabsetPanel()

Functions

• tabPanel(): Create a tab panel that can be included within a tabsetPanel() or a navbarPage().

• tabPanelBody(): Create a tab panel that drops the title argument. This function should be
used within tabsetPanel(type = "hidden"). See tabsetPanel() for example usage.

See Also

tabsetPanel()

Examples

Show a tabset that includes a plot, summary, and
table view of the generated distribution
mainPanel(

tabsetPanel(
tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Table", tableOutput("table"))

)
)

tabsetPanel 209

tabsetPanel Create a tabset panel

Description

Create a tabset that contains tabPanel() elements. Tabsets are useful for dividing output into
multiple independently viewable sections.

Usage

tabsetPanel(
...,
id = NULL,
selected = NULL,
type = c("tabs", "pills", "hidden"),
header = NULL,
footer = NULL

)

Arguments

... tabPanel() elements to include in the tabset

id If provided, you can use input$id in your server logic to determine which of
the current tabs is active. The value will correspond to the value argument that
is passed to tabPanel().

selected The value (or, if none was supplied, the title) of the tab that should be selected
by default. If NULL, the first tab will be selected.

type "tabs" Standard tab look
"pills" Selected tabs use the background fill color
"hidden" Hides the selectable tabs. Use type = "hidden" in conjunction with

tabPanelBody() and updateTabsetPanel() to control the active tab via
other input controls. (See example below)

header Tag or list of tags to display as a common header above all tabPanels.

footer Tag or list of tags to display as a common footer below all tabPanels

Value

A tabset that can be passed to mainPanel()

See Also

tabPanel(), updateTabsetPanel(), insertTab(), showTab()

210 testServer

Examples

Show a tabset that includes a plot, summary, and
table view of the generated distribution
mainPanel(

tabsetPanel(
tabPanel("Plot", plotOutput("plot")),
tabPanel("Summary", verbatimTextOutput("summary")),
tabPanel("Table", tableOutput("table"))

)
)

ui <- fluidPage(
sidebarLayout(

sidebarPanel(
radioButtons("controller", "Controller", 1:3, 1)

),
mainPanel(

tabsetPanel(
id = "hidden_tabs",
Hide the tab values.
Can only switch tabs by using `updateTabsetPanel()`
type = "hidden",
tabPanelBody("panel1", "Panel 1 content"),
tabPanelBody("panel2", "Panel 2 content"),
tabPanelBody("panel3", "Panel 3 content")

)
)

)
)

server <- function(input, output, session) {
observeEvent(input$controller, {
updateTabsetPanel(session, "hidden_tabs", selected = paste0("panel", input$controller))
})

}

if (interactive()) {
shinyApp(ui, server)

}

testServer Reactive testing for Shiny server functions and modules

Description

A way to test the reactive interactions in Shiny applications. Reactive interactions are defined in the
server function of applications and in modules.

Usage

testServer(app = NULL, expr, args = list(), session = MockShinySession$new())

testServer 211

Arguments

app A server function (i.e. a function with input, output, and session), or a mod-
ule function (i.e. a function with first argument id that calls moduleServer().
You can also provide an app, a path an app, or anything that as.shiny.appobj()
can handle.

expr Test code containing expectations. The objects from inside the server function
environment will be made available in the environment of the test expression
(this is done using a data mask with rlang::eval_tidy()). This includes the
parameters of the server function (e.g. input, output, and session), along
with any other values created inside of the server function.

args Additional arguments to pass to the module function. If app is a module, and no
id argument is provided, one will be generated and supplied automatically.

session The MockShinySession object to use as the reactive domain. The same session
object is used as the domain both during invocation of the server or module
under test and during evaluation of expr.

Examples

Testing a server function --
server <- function(input, output, session) {

x <- reactive(input$a * input$b)
}

testServer(server, {
session$setInputs(a = 2, b = 3)
stopifnot(x() == 6)

})

Testing a module --
myModuleServer <- function(id, multiplier = 2, prefix = "I am ") {

moduleServer(id, function(input, output, session) {
myreactive <- reactive({

input$x * multiplier
})
output$txt <- renderText({

paste0(prefix, myreactive())
})

})
}

testServer(myModuleServer, args = list(multiplier = 2), {
session$setInputs(x = 1)
You're also free to use third-party
testing packages like testthat:
expect_equal(myreactive(), 2)
stopifnot(myreactive() == 2)
stopifnot(output$txt == "I am 2")

session$setInputs(x = 2)

212 textAreaInput

stopifnot(myreactive() == 4)
stopifnot(output$txt == "I am 4")
Any additional arguments, below, are passed along to the module.

})

textAreaInput Create a textarea input control

Description

Create a textarea input control for entry of unstructured text values.

Usage

textAreaInput(
inputId,
label,
value = "",
width = NULL,
height = NULL,
cols = NULL,
rows = NULL,
placeholder = NULL,
resize = NULL

)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

height The height of the input, e.g. '400px', or '100%'; see validateCssUnit().

cols Value of the visible character columns of the input, e.g. 80. This argument will
only take effect if there is not a CSS width rule defined for this element; such a
rule could come from the width argument of this function or from a containing
page layout such as fluidPage().

rows The value of the visible character rows of the input, e.g. 6. If the height
argument is specified, height will take precedence in the browser’s rendering.

placeholder A character string giving the user a hint as to what can be entered into the con-
trol. Internet Explorer 8 and 9 do not support this option.

resize Which directions the textarea box can be resized. Can be one of "both", "none",
"vertical", and "horizontal". The default, NULL, will use the client browser’s
default setting for resizing textareas.

textInput 213

Value

A textarea input control that can be added to a UI definition.

Server value

A character string of the text input. The default value is "" unless value is provided.

See Also

updateTextAreaInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), submitButton(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
textAreaInput("caption", "Caption", "Data Summary", width = "1000px"),
verbatimTextOutput("value")

)
server <- function(input, output) {

output$value <- renderText({ input$caption })
}
shinyApp(ui, server)

}

textInput Create a text input control

Description

Create an input control for entry of unstructured text values

Usage

textInput(inputId, label, value = "", width = NULL, placeholder = NULL)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

214 textOutput

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

placeholder A character string giving the user a hint as to what can be entered into the con-
trol. Internet Explorer 8 and 9 do not support this option.

Value

A text input control that can be added to a UI definition.

Server value

A character string of the text input. The default value is "" unless value is provided.

See Also

updateTextInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), submitButton(), textAreaInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
textInput("caption", "Caption", "Data Summary"),
verbatimTextOutput("value")

)
server <- function(input, output) {

output$value <- renderText({ input$caption })
}
shinyApp(ui, server)
}

textOutput Create a text output element

Description

Render a reactive output variable as text within an application page. textOutput() is usually paired
with renderText() and puts regular text in <div> or ; verbatimTextOutput() is usually
paired with renderPrint() and provides fixed-width text in a <pre>.

Usage

textOutput(outputId, container = if (inline) span else div, inline = FALSE)

verbatimTextOutput(outputId, placeholder = FALSE)

titlePanel 215

Arguments

outputId output variable to read the value from

container a function to generate an HTML element to contain the text

inline use an inline (span()) or block container (div()) for the output

placeholder if the output is empty or NULL, should an empty rectangle be displayed to serve
as a placeholder? (does not affect behavior when the output is nonempty)

Details

In both functions, text is HTML-escaped prior to rendering.

Value

An output element for use in UI.

Examples

Only run this example in interactive R sessions
if (interactive()) {

shinyApp(
ui = basicPage(

textInput("txt", "Enter the text to display below:"),
textOutput("text"),
verbatimTextOutput("verb")

),
server = function(input, output) {

output$text <- renderText({ input$txt })
output$verb <- renderText({ input$txt })

}
)

}

titlePanel Create a panel containing an application title.

Description

Create a panel containing an application title.

Usage

titlePanel(title, windowTitle = title)

Arguments

title An application title to display

windowTitle The title that should be displayed by the browser window.

216 updateActionButton

Details

Calling this function has the side effect of including a title tag within the head. You can also
specify a page title explicitly using the title parameter of the top-level page function.

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
titlePanel("Hello Shiny!")

)
shinyApp(ui, server = function(input, output) { })
}

updateActionButton Change the label or icon of an action button on the client

Description

Change the label or icon of an action button on the client

Usage

updateActionButton(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
icon = NULL,
disabled = NULL

)

updateActionLink(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
icon = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

icon An optional icon() to appear on the button.

disabled If TRUE, the button will not be clickable; if FALSE, it will be.

updateActionButton 217

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

actionButton()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
actionButton("update", "Update other buttons and link"),
br(),
actionButton("goButton", "Go"),
br(),
actionButton("goButton2", "Go 2", icon = icon("area-chart")),
br(),
actionButton("goButton3", "Go 3"),
br(),
actionLink("goLink", "Go Link")

)

server <- function(input, output, session) {
observe({
req(input$update)

Updates goButton's label and icon
updateActionButton(session, "goButton",

label = "New label",
icon = icon("calendar"))

Leaves goButton2's label unchanged and
removes its icon
updateActionButton(session, "goButton2",

icon = character(0))

Leaves goButton3's icon, if it exists,
unchanged and changes its label
updateActionButton(session, "goButton3",

218 updateCheckboxGroupInput

label = "New label 3")

Updates goLink's label and icon
updateActionButton(session, "goLink",

label = "New link label",
icon = icon("link"))

})
}

shinyApp(ui, server)
}

updateCheckboxGroupInput

Change the value of a checkbox group input on the client

Description

Change the value of a checkbox group input on the client

Usage

updateCheckboxGroupInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
choices = NULL,
selected = NULL,
inline = FALSE,
choiceNames = NULL,
choiceValues = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

choices List of values to show checkboxes for. If elements of the list are named then that
name rather than the value is displayed to the user. If this argument is provided,
then choiceNames and choiceValues must not be provided, and vice-versa.
The values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

selected The values that should be initially selected, if any.

inline If TRUE, render the choices inline (i.e. horizontally)

updateCheckboxGroupInput 219

choiceNames, choiceValues
List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

checkboxGroupInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
p("The first checkbox group controls the second"),
checkboxGroupInput("inCheckboxGroup", "Input checkbox",
c("Item A", "Item B", "Item C")),

checkboxGroupInput("inCheckboxGroup2", "Input checkbox 2",
c("Item A", "Item B", "Item C"))

)

server <- function(input, output, session) {
observe({
x <- input$inCheckboxGroup

Can use character(0) to remove all choices
if (is.null(x))

x <- character(0)

Can also set the label and select items
updateCheckboxGroupInput(session, "inCheckboxGroup2",

label = paste("Checkboxgroup label", length(x)),

220 updateCheckboxInput

choices = x,
selected = x

)
})

}

shinyApp(ui, server)
}

updateCheckboxInput Change the value of a checkbox input on the client

Description

Change the value of a checkbox input on the client

Usage

updateCheckboxInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
value = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

value Initial value (TRUE or FALSE).

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

updateDateInput 221

See Also

checkboxInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("controller", "Controller", 0, 1, 0, step = 1),
checkboxInput("inCheckbox", "Input checkbox")

)

server <- function(input, output, session) {
observe({
TRUE if input$controller is odd, FALSE if even.
x_even <- input$controller %% 2 == 1

updateCheckboxInput(session, "inCheckbox", value = x_even)
})

}

shinyApp(ui, server)
}

updateDateInput Change the value of a date input on the client

Description

Change the value of a date input on the client

Usage

updateDateInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
value = NULL,
min = NULL,
max = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

222 updateDateInput

value The starting date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

dateInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("n", "Day of month", 1, 30, 10),
dateInput("inDate", "Input date")

)

server <- function(input, output, session) {
observe({
date <- as.Date(paste0("2013-04-", input$n))
updateDateInput(session, "inDate",

label = paste("Date label", input$n),
value = date,
min = date - 3,
max = date + 3

)
})

}

shinyApp(ui, server)
}

updateDateRangeInput 223

updateDateRangeInput Change the start and end values of a date range input on the client

Description

Change the start and end values of a date range input on the client

Usage

updateDateRangeInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
start = NULL,
end = NULL,
min = NULL,
max = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

start The initial start date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.

end The initial end date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.

min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.

max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

224 updateNumericInput

See Also

dateRangeInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("n", "Day of month", 1, 30, 10),
dateRangeInput("inDateRange", "Input date range")

)

server <- function(input, output, session) {
observe({
date <- as.Date(paste0("2013-04-", input$n))

updateDateRangeInput(session, "inDateRange",
label = paste("Date range label", input$n),
start = date - 1,
end = date + 1,
min = date - 5,
max = date + 5

)
})

}

shinyApp(ui, server)
}

updateNumericInput Change the value of a number input on the client

Description

Change the value of a number input on the client

Usage

updateNumericInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
value = NULL,
min = NULL,
max = NULL,
step = NULL

)

updateNumericInput 225

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

value Initial value.

min Minimum allowed value

max Maximum allowed value

step Interval to use when stepping between min and max

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

numericInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("controller", "Controller", 0, 20, 10),
numericInput("inNumber", "Input number", 0),
numericInput("inNumber2", "Input number 2", 0)

)

server <- function(input, output, session) {

observeEvent(input$controller, {
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

updateNumericInput(session, "inNumber", value = x)

updateNumericInput(session, "inNumber2",

226 updateQueryString

label = paste("Number label ", x),
value = x, min = x-10, max = x+10, step = 5)

})
}

shinyApp(ui, server)
}

updateQueryString Update URL in browser’s location bar

Description

This function updates the client browser’s query string in the location bar. It typically is called from
an observer. Note that this will not work in Internet Explorer 9 and below.

Usage

updateQueryString(
queryString,
mode = c("replace", "push"),
session = getDefaultReactiveDomain()

)

Arguments

queryString The new query string to show in the location bar.

mode When the query string is updated, should the current history entry be replaced
(default), or should a new history entry be pushed onto the history stack? The
former should only be used in a live bookmarking context. The latter is useful
if you want to navigate between states using the browser’s back and forward
buttons. See Examples.

session A Shiny session object.

Details

For mode = "push", only three updates are currently allowed:

1. the query string (format: ?param1=val1¶m2=val2)

2. the hash (format: #hash)

3. both the query string and the hash (format: ?param1=val1¶m2=val2#hash)

In other words, if mode = "push", the queryString must start with either ? or with #.

A technical curiosity: under the hood, this function is calling the HTML5 history API (which is
where the names for the mode argument come from). When mode = "replace", the function called
is window.history.replaceState(null, null, queryString). When mode = "push", the func-
tion called is window.history.pushState(null, null, queryString).

updateQueryString 227

See Also

enableBookmarking(), getQueryString()

Examples

Only run these examples in interactive sessions
if (interactive()) {

App 1: Doing "live" bookmarking
Update the browser's location bar every time an input changes.
This should not be used with enableBookmarking("server"),
because that would create a new saved state on disk every time
the user changes an input.
enableBookmarking("url")
shinyApp(
ui = function(req) {

fluidPage(
textInput("txt", "Text"),
checkboxInput("chk", "Checkbox")

)
},
server = function(input, output, session) {

observe({
Trigger this observer every time an input changes
reactiveValuesToList(input)
session$doBookmark()

})
onBookmarked(function(url) {

updateQueryString(url)
})

}
)

App 2: Printing the value of the query string
(Use the back and forward buttons to see how the browser
keeps a record of each state)
shinyApp(

ui = fluidPage(
textInput("txt", "Enter new query string"),
helpText("Format: ?param1=val1¶m2=val2"),
actionButton("go", "Update"),
hr(),
verbatimTextOutput("query")

),
server = function(input, output, session) {

observeEvent(input$go, {
updateQueryString(input$txt, mode = "push")

})
output$query <- renderText({

query <- getQueryString()
queryText <- paste(names(query), query,

sep = "=", collapse=", ")

228 updateRadioButtons

paste("Your query string is:\n", queryText)
})

}
)

}

updateRadioButtons Change the value of a radio input on the client

Description

Change the value of a radio input on the client

Usage

updateRadioButtons(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
choices = NULL,
selected = NULL,
inline = FALSE,
choiceNames = NULL,
choiceValues = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().
inputId The id of the input object.
label The label to set for the input object.
choices List of values to select from (if elements of the list are named then that name

rather than the value is displayed to the user). If this argument is provided, then
choiceNames and choiceValues must not be provided, and vice-versa. The
values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

selected The initially selected value. If not specified, then it defaults to the first item in
choices. To start with no items selected, use character(0).

inline If TRUE, render the choices inline (i.e. horizontally)
choiceNames, choiceValues

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

updateRadioButtons 229

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

radioButtons()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
p("The first radio button group controls the second"),
radioButtons("inRadioButtons", "Input radio buttons",
c("Item A", "Item B", "Item C")),

radioButtons("inRadioButtons2", "Input radio buttons 2",
c("Item A", "Item B", "Item C"))

)

server <- function(input, output, session) {
observe({
x <- input$inRadioButtons

Can also set the label and select items
updateRadioButtons(session, "inRadioButtons2",

label = paste("radioButtons label", x),
choices = x,
selected = x

)
})

}

shinyApp(ui, server)
}

230 updateSelectInput

updateSelectInput Change the value of a select input on the client

Description

Change the value of a select input on the client

Usage

updateSelectInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
choices = NULL,
selected = NULL

)

updateSelectizeInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
choices = NULL,
selected = NULL,
options = list(),
server = FALSE

)

updateVarSelectInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
data = NULL,
selected = NULL

)

updateVarSelectizeInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
data = NULL,
selected = NULL,
options = list(),
server = FALSE

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

updateSelectInput 231

inputId The id of the input object.

label The label to set for the input object.

choices List of values to select from. If elements of the list are named, then that name —
rather than the value — is displayed to the user. It’s also possible to group related
inputs by providing a named list whose elements are (either named or unnamed)
lists, vectors, or factors. In this case, the outermost names will be used as the
group labels (leveraging the <optgroup> HTML tag) for the elements in the
respective sublist. See the example section for a small demo of this feature.

selected The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.

options A list of options. See the documentation of selectize.js(https://selectize.
dev/docs/usage) for possible options (character option values inside base::I()
will be treated as literal JavaScript code; see renderDataTable() for details).

server whether to store choices on the server side, and load the select options dynam-
ically on searching, instead of writing all choices into the page at once (i.e.,
only use the client-side version of selectize.js)

data A data frame. Used to retrieve the column names as choices for a selectInput()

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

selectInput() varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
p("The checkbox group controls the select input"),
checkboxGroupInput("inCheckboxGroup", "Input checkbox",
c("Item A", "Item B", "Item C")),

selectInput("inSelect", "Select input",
c("Item A", "Item B", "Item C"))

https://selectize.dev/docs/usage
https://selectize.dev/docs/usage

232 updateSliderInput

)

server <- function(input, output, session) {
observe({
x <- input$inCheckboxGroup

Can use character(0) to remove all choices
if (is.null(x))

x <- character(0)

Can also set the label and select items
updateSelectInput(session, "inSelect",

label = paste("Select input label", length(x)),
choices = x,
selected = tail(x, 1)

)
})

}

shinyApp(ui, server)
}

updateSliderInput Update Slider Input Widget

Description

Change the value of a slider input on the client.

Usage

updateSliderInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
value = NULL,
min = NULL,
max = NULL,
step = NULL,
timeFormat = NULL,
timezone = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

updateSliderInput 233

value The initial value of the slider, either a number, a date (class Date), or a date-time
(class POSIXt). A length one vector will create a regular slider; a length two
vector will create a double-ended range slider. Must lie between min and max.

min, max The minimum and maximum values (inclusive) that can be selected.

step Specifies the interval between each selectable value on the slider. Either NULL,
the default, which uses a heuristic to determine the step size or a single number.
If the values are dates, step is in days; if the values are date-times, step is in
seconds.

timeFormat Only used if the values are Date or POSIXt objects. A time format string, to be
passed to the Javascript strftime library. See https://github.com/samsonjs/
strftime for more details. The allowed format specifications are very similar,
but not identical, to those for R’s base::strftime() function. For Dates, the
default is "%F" (like "2015-07-01"), and for POSIXt, the default is "%F %T"
(like "2015-07-01 15:32:10").

timezone Only used if the values are POSIXt objects. A string specifying the time zone
offset for the displayed times, in the format "+HHMM" or "-HHMM". If NULL (the
default), times will be displayed in the browser’s time zone. The value "+0000"
will result in UTC time.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

sliderInput()

Examples

Only run this example in interactive R sessions
if (interactive()) {

shinyApp(
ui = fluidPage(

sidebarLayout(
sidebarPanel(

p("The first slider controls the second"),
sliderInput("control", "Controller:", min=0, max=20, value=10,

step=1),
sliderInput("receive", "Receiver:", min=0, max=20, value=10,

https://github.com/samsonjs/strftime
https://github.com/samsonjs/strftime

234 updateTabsetPanel

step=1)
),
mainPanel()

)
),
server = function(input, output, session) {

observe({
val <- input$control
Control the value, min, max, and step.
Step size is 2 when input value is even; 1 when value is odd.
updateSliderInput(session, "receive", value = val,

min = floor(val/2), max = val+4, step = (val+1)%%2 + 1)
})

}
)

}

updateTabsetPanel Change the selected tab on the client

Description

Change the selected tab on the client

Usage

updateTabsetPanel(
session = getDefaultReactiveDomain(),
inputId,
selected = NULL

)

updateNavbarPage(
session = getDefaultReactiveDomain(),
inputId,
selected = NULL

)

updateNavlistPanel(
session = getDefaultReactiveDomain(),
inputId,
selected = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the tabsetPanel, navlistPanel, or navbarPage object.

updateTextAreaInput 235

selected The value (or, if none was supplied, the title) of the tab that should be selected
by default. If NULL, the first tab will be selected.

See Also

tabsetPanel(), navlistPanel(), navbarPage()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(sidebarLayout(
sidebarPanel(
sliderInput("controller", "Controller", 1, 3, 1)

),
mainPanel(

tabsetPanel(id = "inTabset",
tabPanel(title = "Panel 1", value = "panel1", "Panel 1 content"),
tabPanel(title = "Panel 2", value = "panel2", "Panel 2 content"),
tabPanel(title = "Panel 3", value = "panel3", "Panel 3 content")

)
)

))

server <- function(input, output, session) {
observeEvent(input$controller, {

updateTabsetPanel(session, "inTabset",
selected = paste0("panel", input$controller)

)
})

}

shinyApp(ui, server)
}

updateTextAreaInput Change the value of a textarea input on the client

Description

Change the value of a textarea input on the client

Usage

updateTextAreaInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,

236 updateTextAreaInput

value = NULL,
placeholder = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

value Initial value.

placeholder A character string giving the user a hint as to what can be entered into the con-
trol. Internet Explorer 8 and 9 do not support this option.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

textAreaInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("controller", "Controller", 0, 20, 10),
textAreaInput("inText", "Input textarea"),
textAreaInput("inText2", "Input textarea 2")

)

server <- function(input, output, session) {
observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

This will change the value of input$inText, based on x
updateTextAreaInput(session, "inText", value = paste("New text", x))

updateTextInput 237

Can also set the label, this time for input$inText2
updateTextAreaInput(session, "inText2",

label = paste("New label", x),
value = paste("New text", x))

})
}

shinyApp(ui, server)
}

updateTextInput Change the value of a text input on the client

Description

Change the value of a text input on the client

Usage

updateTextInput(
session = getDefaultReactiveDomain(),
inputId,
label = NULL,
value = NULL,
placeholder = NULL

)

Arguments

session The session object passed to function given to shinyServer. Default is getDefaultReactiveDomain().

inputId The id of the input object.

label The label to set for the input object.

value Initial value.

placeholder A character string giving the user a hint as to what can be entered into the con-
trol. Internet Explorer 8 and 9 do not support this option.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

238 urlModal

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(0). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

textInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput("controller", "Controller", 0, 20, 10),
textInput("inText", "Input text"),
textInput("inText2", "Input text 2")

)

server <- function(input, output, session) {
observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

This will change the value of input$inText, based on x
updateTextInput(session, "inText", value = paste("New text", x))

Can also set the label, this time for input$inText2
updateTextInput(session, "inText2",

label = paste("New label", x),
value = paste("New text", x))

})
}

shinyApp(ui, server)
}

urlModal Generate a modal dialog that displays a URL

Description

The modal dialog generated by urlModal will display the URL in a textarea input, and the URL
text will be selected so that it can be easily copied. The result from urlModal should be passed to
the showModal() function to display it in the browser.

Usage

urlModal(url, title = "Bookmarked application link", subtitle = NULL)

useBusyIndicators 239

Arguments

url A URL to display in the dialog box.

title A title for the dialog box.

subtitle Text to display underneath URL.

useBusyIndicators Enable/disable busy indication

Description

Busy indicators provide a visual cue to users when the server is busy calculating outputs or oth-
erwise performing tasks (e.g., producing downloads). When enabled, a spinner is shown on each
calculating/recalculating output, and a pulsing banner is shown at the top of the page when the app
is otherwise busy. Busy indication is enabled by default for UI created with bslib, but must be
enabled otherwise. To enable/disable, include the result of this function in anywhere in the app’s
UI.

Usage

useBusyIndicators(..., spinners = TRUE, pulse = TRUE, fade = TRUE)

Arguments

... Currently ignored.

spinners Whether to show a spinner on each calculating/recalculating output.

pulse Whether to show a pulsing banner at the top of the page when the app is busy.

fade Whether to fade recalculating outputs. A value of FALSE is equivalent to busyIndicatorOptions(fade_opacity=1).

Details

When both spinners and pulse are set to TRUE, the pulse is automatically disabled when spinner(s)
are active. When both spinners and pulse are set to FALSE, no busy indication is shown (other
than the graying out of recalculating outputs).

See Also

busyIndicatorOptions() for customizing the appearance of the busy indicators.

Examples

library(bslib)

ui <- page_fillable(
useBusyIndicators(),
card(

240 validate

card_header(
"A plot",
input_task_button("simulate", "Simulate"),
class = "d-flex justify-content-between align-items-center"

),
plotOutput("p"),

)
)

server <- function(input, output) {
output$p <- renderPlot({

input$simulate
Sys.sleep(4)
plot(x = rnorm(100), y = rnorm(100))

})
}

shinyApp(ui, server)

validate Validate input values and other conditions

Description

validate() provides convenient mechanism for validating that an output has all the inputs neces-
sary for successful rendering. It takes any number of (unnamed) arguments, each representing a
condition to test. If any of condition fails (i.e. is not "truthy"), a special type of error is signaled to
stop execution. If this error is not handled by application-specific code, it is displayed to the user
by Shiny.

If you use validate() in a reactive() validation failures will automatically propagate to outputs
that use the reactive.

Usage

validate(..., errorClass = character(0))

need(expr, message = paste(label, "must be provided"), label)

Arguments

... A list of tests. Each test should equal NULL for success, FALSE for silent failure,
or a string for failure with an error message.

errorClass A CSS class to apply. The actual CSS string will have shiny-output-error-
prepended to this value.

expr An expression to test. The condition will pass if the expression meets the con-
ditions spelled out in Details.

validate 241

message A message to convey to the user if the validation condition is not met. If no
message is provided, one will be created using label. To fail with no message,
use FALSE for the message.

label A human-readable name for the field that may be missing. This parameter is not
needed if message is provided, but must be provided otherwise.

need()

An easy way to provide arguments to validate() is to use need(), which takes an expression and
a string. If the expression is not "truthy" then the string will be used as the error message.

If "truthiness" is flexible for your use case, you’ll need to explicitly generate a logical values. For
example, if you want allow NA but not NULL, you can !is.null(input$foo).

If you need validation logic that differs significantly from need(), you can create your own vali-
dation test functions. A passing test should return NULL. A failing test should return either a string
providing the error to display to the user, or if the failure should happen silently, FALSE.

Alternatively you can use validate() within an if statement, which is particularly useful for more
complex conditions:

if (input$x < 0 && input$choice == "positive") {
validate("If choice is positive then x must be greater than 0")

}

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

ui <- fluidPage(
checkboxGroupInput('in1', 'Check some letters', choices = head(LETTERS)),
selectizeInput('in2', 'Select a state', choices = c("", state.name)),
plotOutput('plot')

)

server <- function(input, output) {
output$plot <- renderPlot({
validate(

need(input$in1, 'Check at least one letter!'),
need(input$in2 != '', 'Please choose a state.')

)
plot(1:10, main = paste(c(input$in1, input$in2), collapse = ', '))

})
}

shinyApp(ui, server)

}

242 varSelectInput

varSelectInput Select variables from a data frame

Description

Create a select list that can be used to choose a single or multiple items from the column names of
a data frame.

Usage

varSelectInput(
inputId,
label,
data,
selected = NULL,
multiple = FALSE,
selectize = TRUE,
width = NULL,
size = NULL

)

varSelectizeInput(inputId, ..., options = NULL, width = NULL)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

data A data frame. Used to retrieve the column names as choices for a selectInput()

selected The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.

multiple Is selection of multiple items allowed?

selectize Whether to use selectize.js or not.

width The width of the input, e.g. '400px', or '100%'; see validateCssUnit().

size Number of items to show in the selection box; a larger number will result in a
taller box. Not compatible with selectize=TRUE. Normally, when multiple=FALSE,
a select input will be a drop-down list, but when size is set, it will be a box in-
stead.

... Arguments passed to varSelectInput().

options A list of options. See the documentation of selectize.js(https://selectize.
dev/docs/usage) for possible options (character option values inside base::I()
will be treated as literal JavaScript code; see renderDataTable() for details).

https://selectize.dev/docs/usage
https://selectize.dev/docs/usage

varSelectInput 243

Details

By default, varSelectInput() and selectizeInput() use the JavaScript library selectize.js (https:
//selectize.dev/) to instead of the basic select input element. To use the standard HTML select
input element, use selectInput() with selectize=FALSE.

Value

A variable select list control that can be added to a UI definition.

Server value

The resulting server input value will be returned as:

• A symbol if multiple = FALSE. The input value should be used with rlang’s rlang::!!().
For example, ggplot2::aes(!!input$variable).

• A list of symbols if multiple = TRUE. The input value should be used with rlang’s rlang::!!!()
to expand the symbol list as individual arguments. For example, dplyr::select(mtcars,
!!!input$variabls) which is equivalent to dplyr::select(mtcars, !!input$variabls[[1]],
!!input$variabls[[2]], ..., !!input$variabls[[length(input$variabls)]]).

Note

The variable selectize input created from varSelectizeInput() allows deletion of the selected
option even in a single select input, which will return an empty string as its value. This is the default
behavior of selectize.js. However, the selectize input created from selectInput(..., selectize
= TRUE) will ignore the empty string value when it is a single choice input and the empty string is
not in the choices argument. This is to keep compatibility with selectInput(..., selectize =
FALSE).

See Also

updateSelectInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), submitButton(), textAreaInput(), textInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

library(ggplot2)

single selection
shinyApp(

ui = fluidPage(
varSelectInput("variable", "Variable:", mtcars),
plotOutput("data")

),
server = function(input, output) {

https://selectize.dev/
https://selectize.dev/

244 verticalLayout

output$data <- renderPlot({
ggplot(mtcars, aes(!!input$variable)) + geom_histogram()

})
}

)

multiple selections
Not run:
shinyApp(
ui = fluidPage(

varSelectInput("variables", "Variable:", mtcars, multiple = TRUE),
tableOutput("data")

),
server = function(input, output) {

output$data <- renderTable({
if (length(input$variables) == 0) return(mtcars)
mtcars %>% dplyr::select(!!!input$variables)

}, rownames = TRUE)
}

)
End(Not run)

}

verticalLayout Lay out UI elements vertically

Description

Create a container that includes one or more rows of content (each element passed to the container
will appear on it’s own line in the UI)

Usage

verticalLayout(..., fluid = TRUE)

Arguments

... Elements to include within the container

fluid TRUE to use fluid layout; FALSE to use fixed layout.

See Also

Other layout functions: fillPage(), fixedPage(), flowLayout(), fluidPage(), navbarPage(),
sidebarLayout(), splitLayout()

viewer 245

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
verticalLayout(
a(href="http://example.com/link1", "Link One"),
a(href="http://example.com/link2", "Link Two"),
a(href="http://example.com/link3", "Link Three")

)
)
shinyApp(ui, server = function(input, output) { })
}

viewer Viewer options

Description

Use these functions to control where the gadget is displayed in RStudio (or other R environments
that emulate RStudio’s viewer pane/dialog APIs). If viewer APIs are not available in the cur-
rent R environment, then the gadget will be displayed in the system’s default web browser (see
utils::browseURL()).

Usage

paneViewer(minHeight = NULL)

dialogViewer(dialogName, width = 600, height = 600)

browserViewer(browser = getOption("browser"))

Arguments

minHeight The minimum height (in pixels) desired to show the gadget in the viewer pane. If
a positive number, resize the pane if necessary to show at least that many pixels.
If NULL, use the existing viewer pane size. If "maximize", use the maximum
available vertical space.

dialogName The window title to display for the dialog.

width, height The desired dialog width/height, in pixels.

browser See utils::browseURL().

Value

A function that takes a single url parameter, suitable for passing as the viewer argument of
runGadget().

246 withMathJax

wellPanel Create a well panel

Description

Creates a panel with a slightly inset border and grey background. Equivalent to Bootstrap’s well
CSS class.

Usage

wellPanel(...)

Arguments

... UI elements to include inside the panel.

Value

The newly created panel.

withMathJax Load the MathJax library and typeset math expressions

Description

This function adds MathJax to the page and typeset the math expressions (if found) in the content
.... It only needs to be called once in an app unless the content is rendered after the page is
loaded, e.g. via renderUI(), in which case we have to call it explicitly every time we write math
expressions to the output.

Usage

withMathJax(...)

Arguments

... any HTML elements to apply MathJax to

Examples

withMathJax(helpText("Some math here $$\\alpha+\\beta$$"))
now we can just write "static" content without withMathJax()
div("more math here $$\\sqrt{2}$$")

withProgress 247

withProgress Reporting progress (functional API)

Description

Reports progress to the user during long-running operations.

Usage

withProgress(
expr,
min = 0,
max = 1,
value = min + (max - min) * 0.1,
message = NULL,
detail = NULL,
style = getShinyOption("progress.style", default = "notification"),
session = getDefaultReactiveDomain(),
env = parent.frame(),
quoted = FALSE

)

setProgress(
value = NULL,
message = NULL,
detail = NULL,
session = getDefaultReactiveDomain()

)

incProgress(
amount = 0.1,
message = NULL,
detail = NULL,
session = getDefaultReactiveDomain()

)

Arguments

expr The work to be done. This expression should contain calls to setProgress()
or incProgress().

min The value that represents the starting point of the progress bar. Must be less
tham max. Default is 0.

max The value that represents the end of the progress bar. Must be greater than min.
Default is 1.

value Single-element numeric vector; the value at which to set the progress bar, rela-
tive to min and max.

248 withProgress

message A single-element character vector; the message to be displayed to the user, or
NULL to hide the current message (if any).

detail A single-element character vector; the detail message to be displayed to the user,
or NULL to hide the current detail message (if any). The detail message will be
shown with a de-emphasized appearance relative to message.

style Progress display style. If "notification" (the default), the progress indicator
will show using Shiny’s notification API. If "old", use the same HTML and
CSS used in Shiny 0.13.2 and below (this is for backward-compatibility).

session The Shiny session object, as provided by shinyServer to the server function.
The default is to automatically find the session by using the current reactive
domain.

env The environment in which expr should be evaluated.

quoted Whether expr is a quoted expression (this is not common).

amount For incProgress, the amount to increment the status bar. Default is 0.1.

Details

This package exposes two distinct programming APIs for working with progress. Using withProgress
with incProgress or setProgress provide a simple function-based interface, while the Progress()
reference class provides an object-oriented API.

Use withProgress to wrap the scope of your work; doing so will cause a new progress panel to
be created, and it will be displayed the first time incProgress or setProgress are called. When
withProgress exits, the corresponding progress panel will be removed.

The incProgress function increments the status bar by a specified amount, whereas the setProgress
function sets it to a specific value, and can also set the text displayed.

Generally, withProgress/incProgress/setProgress should be sufficient; the exception is if the
work to be done is asynchronous (this is not common) or otherwise cannot be encapsulated by a
single scope. In that case, you can use the Progress reference class.

As of version 0.14, the progress indicators use Shiny’s new notification API. If you want to use the
old styling (for example, you may have used customized CSS), you can use style="old" each time
you call withProgress(). If you don’t want to set the style each time withProgress is called, you
can instead call shinyOptions(progress.style="old") just once, inside the server function.

Value

The result of expr.

See Also

Progress()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

withProgress 249

ui <- fluidPage(
plotOutput("plot")

)

server <- function(input, output) {
output$plot <- renderPlot({
withProgress(message = 'Calculation in progress',

detail = 'This may take a while...', value = 0, {
for (i in 1:15) {

incProgress(1/15)
Sys.sleep(0.25)

}
})
plot(cars)

})
}

shinyApp(ui, server)
}

Index

∗ datasets
NS, 114

∗ input elements
actionButton, 9
checkboxGroupInput, 31
checkboxInput, 33
dateInput, 42
dateRangeInput, 45
fileInput, 65
numericInput, 115
passwordInput, 133
radioButtons, 143
selectInput, 181
sliderInput, 199
submitButton, 204
textAreaInput, 212
textInput, 213
varSelectInput, 242

∗ layout functions
fillPage, 67
fixedPage, 70
flowLayout, 72
fluidPage, 73
navbarPage, 111
sidebarLayout, 196
splitLayout, 203
verticalLayout, 244

absolutePanel, 7
actionButton, 9, 21, 32, 34, 44, 46, 66, 116,

133, 144, 183, 201, 205, 213, 214,
243

actionButton(), 20, 22, 95, 120–122, 204,
205, 217

actionLink (actionButton), 9
addResourcePath, 10
addResourcePath(), 42
animationOptions (sliderInput), 199
animationOptions(), 200
appendTab (insertTab), 85

applyInputHandlers(), 157
as.shiny.appobj(), 211

base::.Random.seed(), 170
base::as.list(), 154
base::I(), 182, 231, 242
base::local(), 93
base::logical(), 94
base::strftime(), 200, 233
base::Sys.time(), 150
basicPage (bootstrapPage), 24
bindCache, 11
bindCache(), 12, 19, 20, 39, 98, 118, 158, 160
bindEvent, 19
bindEvent(), 12, 13, 17, 65, 118
bookmarkButton, 22
bootstrapLib, 23
bootstrapLib(), 187
bootstrapPage, 24
bootstrapPage(), 24
browserViewer (viewer), 245
brushedPoints, 25
brushOpts, 27
brushOpts(), 35, 135
bslib::bs_theme(), 23, 24, 68, 71, 73, 106,

112
busyIndicatorOptions, 28
busyIndicatorOptions(), 239

cachem::cache_disk(), 12, 14, 158, 160
cachem::cache_mem(), 14, 82, 160
Cairo::CairoPNG(), 139
callModule, 30
callModule(), 31, 109
cat(), 166
checkboxGroupInput, 9, 31, 34, 44, 46, 66,

116, 133, 144, 183, 201, 205, 213,
214, 217, 219, 220, 222, 223, 225,
229, 231, 233, 236, 238, 243

checkboxGroupInput(), 34, 219

250

INDEX 251

checkboxInput, 9, 32, 33, 44, 46, 66, 116,
133, 144, 183, 201, 205, 213, 214,
243

checkboxInput(), 32, 221
clickOpts, 34
clickOpts(), 28, 135
column, 35
column(), 71, 73, 74
commonmark::markdown_html(), 96
conditionalPanel, 36
createRenderFunction, 38
createRenderFunction(), 15, 16, 97, 98
createWebDependency, 41
createWebDependency(), 16, 39, 98

Date, 44, 46
dateInput, 9, 32, 34, 42, 46, 66, 116, 133,

144, 183, 201, 205, 213, 214, 243
dateInput(), 46, 222
dateRangeInput, 9, 32, 34, 44, 45, 66, 116,

133, 144, 183, 201, 205, 213, 214,
243

dateRangeInput(), 44, 224
dblclickOpts (clickOpts), 34
debounce, 47
devmode, 49
devmode(), 82
devmode_inform (devmode), 49
dialogViewer (viewer), 245
div(), 69
domain, 117
domains, 48, 54, 117, 120, 146
downloadButton, 55
downloadButton(), 56
downloadHandler, 56
downloadHandler(), 55
downloadLink (downloadButton), 55
downloadLink(), 56
dynamic, 96, 102

enableBookmarking, 57
enableBookmarking(), 22, 188, 189, 227
eventReactive (observeEvent), 118
eventReactive(), 9, 19, 20, 65
exportTestValues, 61
ExtendedTask, 63

fileInput, 9, 32, 34, 44, 46, 65, 116, 133,
144, 183, 201, 205, 213, 214, 243

fillCol (fillRow), 69
fillPage, 67, 71, 72, 74, 112, 197, 203, 244
fillPage(), 24
fillRow, 69
fixedPage, 68, 70, 72, 74, 112, 197, 203, 244
fixedPage(), 25, 68
fixedPanel (absolutePanel), 7
fixedRow (fixedPage), 70
fixedRow(), 35, 36
flowLayout, 68, 71, 72, 74, 112, 197, 203, 244
flowLayout(), 85
fluidPage, 68, 71, 72, 73, 112, 197, 203, 244
fluidPage(), 24, 25, 68, 71, 106, 212
fluidRow (fluidPage), 73
fluidRow(), 24, 35, 36
freezeReactiveVal, 75
freezeReactiveValue

(freezeReactiveVal), 75
Future, 64
future::future(), 15

get_devmode_option (devmode), 49
getCurrentOutputInfo, 76
getCurrentTheme(), 187
getDefaultReactiveDomain (domains), 54
getOption(), 52, 80
getQueryString, 78
getQueryString(), 227
getShinyOption, 79
getUrlHash (getQueryString), 78
Github extensions, 96
glue::trim(), 96
graphics, 136
grDevices::png(), 139
grDevices::replayPlot(), 166
grid, 136

helpText, 82
hideTab (showTab), 195
hoverOpts (clickOpts), 34
hoverOpts(), 135
HTML(), 169, 200
htmlOutput, 83
htmltools::bindFillRole(), 83, 135
htmltools::htmlDependency(), 42, 187
htmltools::tags, 84

I(), 81
icon, 84

252 INDEX

icon(), 9, 22, 55, 106, 205, 216
imageOutput (plotOutput), 134
imageOutput(), 27, 34, 163
in_devmode (devmode), 49
incProgress (withProgress), 247
incProgress(), 247
inputPanel, 85
insertTab, 85
insertTab(), 112, 114, 196, 209
insertUI, 88
insertUI(), 205
installExprFunction

(createRenderFunction), 38
invalidateLater, 91
invalidateLater(), 150
invisible(), 167
is.reactive (reactive), 145
is.reactivevalues, 92
is.reactivevalues(), 153
isolate, 92
isolate(), 20, 65, 81, 99, 119, 120, 153, 154
isRunning, 94
isTruthy, 94

list.files, 96
loadSupport, 95

mainPanel (sidebarLayout), 196
mainPanel(), 209
markdown, 96
markRenderFunction, 97
markRenderFunction(), 16, 40
maskReactiveContext, 98
MockShinySession, 99, 211
modalButton (modalDialog), 106
modalDialog, 106
modalDialog(), 193
moduleServer, 108
moduleServer(), 31, 192, 211

namespace(), 37
navbarMenu (navbarPage), 111
navbarMenu(), 84–87, 195
navbarPage, 68, 71, 72, 74, 111, 197, 203, 244
navbarPage(), 24, 70, 85, 86, 195, 208, 235
navlistPanel, 113
navlistPanel(), 85, 195, 235
nearPoints (brushedPoints), 25
need (validate), 240

need(), 9
NS, 114
ns.sep (NS), 114
numericInput, 9, 32, 34, 44, 46, 66, 115, 133,

144, 183, 201, 205, 213, 214, 217,
219, 220, 222, 223, 225, 229, 231,
233, 236, 237, 243

numericInput(), 225

observe, 116
observe(), 19, 20, 54, 120, 121, 172
observeEvent, 118
observeEvent(), 9, 19, 20, 65, 172
observers, 48
onBookmark, 123
onBookmark(), 58, 192
onBookmarked (onBookmark), 123
onBookmarked(), 58
onFlush, 127
onFlushed (onFlush), 127
onReactiveDomainEnded (domains), 54
onRestore (onBookmark), 123
onRestore(), 58
onRestored (onBookmark), 123
onRestored(), 58
onSessionEnded (onFlush), 127
onSessionEnded(), 129
onStop, 129
onStop(), 128
onUnhandledError (onFlush), 127
options(), 49–51, 80
outputOptions, 131

paneViewer (viewer), 245
parseQueryString, 132
parseQueryString(), 185
passwordInput, 9, 32, 34, 44, 46, 66, 116,

133, 144, 183, 201, 205, 213, 214,
243

plotOutput, 134
plotOutput(), 26, 27, 34, 72, 159, 165, 166
plotPNG, 139
plotPNG(), 82, 159, 163, 165, 166
prependTab (insertTab), 85
print(), 166
Progress, 140
Progress(), 248
promises::as.promise(), 64
promises::promise(), 15

INDEX 253

quote(), 117, 119, 120, 146, 163, 166, 167,
169, 207

quoToFunction (createRenderFunction), 38

radioButtons, 9, 32, 34, 44, 46, 66, 116, 133,
143, 183, 201, 205, 213, 214, 217,
219, 220, 222, 223, 225, 229, 231,
233, 236, 238, 243

radioButtons(), 229
ragg::agg_png(), 139
reactive, 145
reactive domain, 211
reactive expression, 20, 121
Reactive expressions, 150
reactive(), 11, 13, 19, 20, 54, 121, 172, 240
reactiveFileReader, 147
reactiveFileReader(), 149
reactivePoll, 148
reactivePoll(), 147
reactiveTimer, 150
reactiveTimer(), 91
reactiveVal, 151
reactiveVal(), 75
reactiveValues, 153
reactiveValues(), 75, 92, 152, 185
reactiveValuesToList, 154
reactlog, 155
reactlog(), 151
reactlog::reactlog_show, 156
reactlogAddMark (reactlog), 155
reactlogReset (reactlog), 155
reactlogShow (reactlog), 155
reactlogShow(), 81
register_devmode_option (devmode), 49
registerInputHandler, 156
registerInputHandler(), 158
registerThemeDependency(), 187
removeInputHandler, 157
removeInputHandler(), 157
removeModal (showModal), 193
removeModal(), 106
removeNotification (showNotification),

193
removeResourcePath (addResourcePath), 10
removeTab (insertTab), 85
removeUI (insertUI), 88
renderCachedPlot, 158
renderCachedPlot(), 17, 82, 166, 198
renderDataTable(), 182, 206, 231, 242

renderImage, 162
renderImage(), 28, 134, 136
renderPlot, 39, 98, 165
renderPlot(), 19, 118, 134, 136, 158, 160
renderPrint, 166
renderPrint(), 214
renderTable (tableOutput), 206
renderTable(), 11
renderText (renderPrint), 166
renderText(), 11, 15, 19, 118, 214
renderUI, 169
renderUI(), 88, 205, 246
repeatable, 170
req, 171
req(), 9, 75
req(FALSE), 64
resourcePaths (addResourcePath), 10
restoreInput, 173
rlang::enquo0(), 39
rlang::eval_tidy(), 211
rlang::hash(), 159
rlang::inform(), 50, 52
rlang::inject(), 145
rlang::list2(), 102
rlang::quo(), 145
runApp, 173
runApp(), 58, 81, 82, 129, 155, 176, 177, 179,

190, 204
runExample, 175
runGadget, 176
runGadget(), 245
runGist (runUrl), 178
runGitHub (runUrl), 178
runTests, 177
runTests(), 192
runUrl, 178

safeError, 180
selectInput, 9, 32, 34, 44, 46, 66, 116, 133,

144, 181, 201, 205, 213, 214, 217,
219, 220, 222, 223, 225, 229, 231,
233, 236, 238, 243

selectInput(), 231, 242
selectizeInput (selectInput), 181
serverInfo, 184
session, 185
setBookmarkExclude, 188
setBookmarkExclude(), 22
setProgress (withProgress), 247

254 INDEX

setProgress(), 140, 247
setSerializer, 188
shiny (shiny-package), 5
shiny-options, 7
shiny-options (getShinyOption), 79
shiny-package, 5
shinyApp, 189
shinyApp(), 58, 174, 177
shinyAppDir (shinyApp), 189
shinyAppFile (shinyApp), 189
shinyAppTemplate, 191
shinyAppTemplate(), 178
shinyDeprecated(), 80
shinyOptions (getShinyOption), 79
shinyOptions(), 14
shinyOptions(progress.style=old), 140,

248
shinyUI, 24, 71, 73, 112
showBookmarkUrlModal, 192
showModal, 193
showModal(), 238
showNotification, 193
showTab, 195
showTab(), 87, 112, 114, 209
sidebarLayout, 68, 71, 72, 74, 112, 196, 203,

244
sidebarLayout(), 24, 70, 73
sidebarPanel (sidebarLayout), 196
singleton(), 11
sizeGrowthRatio, 198
sizeGrowthRatio(), 17, 158
sliderInput, 9, 21, 32, 34, 44, 46, 66, 116,

133, 144, 183, 199, 205, 213, 214,
243

sliderInput(), 233
snapshotExclude, 201
snapshotPreprocessInput, 202
snapshotPreprocessOutput, 202
splitLayout, 68, 71, 72, 74, 112, 197, 203,

244
stacktrace(), 40, 117, 146
stderr(), 50
stopApp, 204
submitButton, 9, 32, 34, 44, 46, 66, 116, 133,

144, 183, 201, 204, 213, 214, 243

tableOutput, 206
tableOutput(), 207
tabPanel, 208

tabPanel(), 84, 85, 111–114, 195, 209
tabPanelBody (tabPanel), 208
tabPanelBody(), 209
tabsetPanel, 209
tabsetPanel(), 85, 112, 195, 208, 235
tag(), 200
tagList(), 69
testServer, 210
testServer(), 31, 99, 109
textAreaInput, 9, 32, 34, 44, 46, 66, 116,

133, 144, 183, 201, 205, 212, 214,
243

textAreaInput(), 236
textInput, 9, 32, 34, 44, 46, 66, 116, 133,

144, 183, 201, 205, 213, 213, 243
textInput(), 173, 238
textOutput, 214
textOutput(), 166, 167
throttle (debounce), 47
titlePanel, 215
titlePanel(), 73

uiOutput (htmlOutput), 83
uiOutput(), 169
updateActionButton, 216
updateActionButton(), 9
updateActionLink (updateActionButton),

216
updateCheckboxGroupInput, 218
updateCheckboxGroupInput(), 32
updateCheckboxInput, 220
updateCheckboxInput(), 34
updateDateInput, 221
updateDateInput(), 44
updateDateRangeInput, 223
updateDateRangeInput(), 46
updateNavbarPage (updateTabsetPanel),

234
updateNavbarPage(), 112
updateNavlistPanel (updateTabsetPanel),

234
updateNavlistPanel(), 114
updateNumericInput, 224
updateNumericInput(), 116
updateQueryString, 226
updateQueryString(), 58, 78
updateRadioButtons, 228
updateRadioButtons(), 144
updateSelectInput, 230

INDEX 255

updateSelectInput(), 183, 243
updateSelectizeInput

(updateSelectInput), 230
updateSliderInput, 232
updateSliderInput(), 201
updateTabsetPanel, 234
updateTabsetPanel(), 209
updateTextAreaInput, 235
updateTextAreaInput(), 213
updateTextInput, 237
updateTextInput(), 133, 187, 214
updateVarSelectInput

(updateSelectInput), 230
updateVarSelectizeInput

(updateSelectInput), 230
urlModal, 238
urlModal(), 192
useBusyIndicators, 239
useBusyIndicators(), 29
utils::browseURL(), 245

validate, 240
validateCssUnit(), 9, 32, 33, 43, 46, 65,

115, 133, 143, 182, 200, 203, 205,
212, 214, 242

validation, 20, 121
varSelectInput, 9, 32, 34, 44, 46, 66, 116,

133, 144, 183, 201, 205, 213, 214,
242

varSelectInput(), 183, 231
varSelectizeInput (varSelectInput), 242
verbatimTextOutput (textOutput), 214
verbatimTextOutput(), 166, 167
verticalLayout, 68, 71, 72, 74, 112, 197,

203, 244
viewer, 245
viewer(), 177

wellPanel, 246
with_devmode (devmode), 49
withMathJax, 246
withMathJax(), 81
withProgress, 247
withProgress(), 140, 142
withReactiveDomain (domains), 54

xtable::print.xtable(), 207
xtable::xtable(), 206, 207

	shiny-package
	absolutePanel
	actionButton
	addResourcePath
	bindCache
	bindEvent
	bookmarkButton
	bootstrapLib
	bootstrapPage
	brushedPoints
	brushOpts
	busyIndicatorOptions
	callModule
	checkboxGroupInput
	checkboxInput
	clickOpts
	column
	conditionalPanel
	createRenderFunction
	createWebDependency
	dateInput
	dateRangeInput
	debounce
	devmode
	domains
	downloadButton
	downloadHandler
	enableBookmarking
	exportTestValues
	ExtendedTask
	fileInput
	fillPage
	fillRow
	fixedPage
	flowLayout
	fluidPage
	freezeReactiveVal
	getCurrentOutputInfo
	getQueryString
	getShinyOption
	helpText
	htmlOutput
	icon
	inputPanel
	insertTab
	insertUI
	invalidateLater
	is.reactivevalues
	isolate
	isRunning
	isTruthy
	loadSupport
	markdown
	markRenderFunction
	maskReactiveContext
	MockShinySession
	modalDialog
	moduleServer
	navbarPage
	navlistPanel
	NS
	numericInput
	observe
	observeEvent
	onBookmark
	onFlush
	onStop
	outputOptions
	parseQueryString
	passwordInput
	plotOutput
	plotPNG
	Progress
	radioButtons
	reactive
	reactiveFileReader
	reactivePoll
	reactiveTimer
	reactiveVal
	reactiveValues
	reactiveValuesToList
	reactlog
	registerInputHandler
	removeInputHandler
	renderCachedPlot
	renderImage
	renderPlot
	renderPrint
	renderUI
	repeatable
	req
	restoreInput
	runApp
	runExample
	runGadget
	runTests
	runUrl
	safeError
	selectInput
	serverInfo
	session
	setBookmarkExclude
	setSerializer
	shinyApp
	shinyAppTemplate
	showBookmarkUrlModal
	showModal
	showNotification
	showTab
	sidebarLayout
	sizeGrowthRatio
	sliderInput
	snapshotExclude
	snapshotPreprocessInput
	snapshotPreprocessOutput
	splitLayout
	stopApp
	submitButton
	tableOutput
	tabPanel
	tabsetPanel
	testServer
	textAreaInput
	textInput
	textOutput
	titlePanel
	updateActionButton
	updateCheckboxGroupInput
	updateCheckboxInput
	updateDateInput
	updateDateRangeInput
	updateNumericInput
	updateQueryString
	updateRadioButtons
	updateSelectInput
	updateSliderInput
	updateTabsetPanel
	updateTextAreaInput
	updateTextInput
	urlModal
	useBusyIndicators
	validate
	varSelectInput
	verticalLayout
	viewer
	wellPanel
	withMathJax
	withProgress
	Index

